Chinese Journal of Chemical Engineering ›› 2025, Vol. 80 ›› Issue (4): 166-183.DOI: 10.1016/j.cjche.2025.02.003
Previous Articles Next Articles
Xin Zhou1, Ce Liu1, Zhibo Zhang2, Xinrui Song2, Haiyan Luo1, Weitao Zhang1, Lianying Wu1, Hui Zhao2, Yibin Liu2, Xiaobo Chen2, Hao Yan2, Chaohe Yang2
Received:
2024-07-30
Revised:
2025-02-13
Accepted:
2025-02-19
Online:
2025-03-11
Published:
2025-04-28
Contact:
Hao Yan,E-mail:haoyan@upc.edu.cn
Supported by:
Xin Zhou1, Ce Liu1, Zhibo Zhang2, Xinrui Song2, Haiyan Luo1, Weitao Zhang1, Lianying Wu1, Hui Zhao2, Yibin Liu2, Xiaobo Chen2, Hao Yan2, Chaohe Yang2
通讯作者:
Hao Yan,E-mail:haoyan@upc.edu.cn
基金资助:
Xin Zhou, Ce Liu, Zhibo Zhang, Xinrui Song, Haiyan Luo, Weitao Zhang, Lianying Wu, Hui Zhao, Yibin Liu, Xiaobo Chen, Hao Yan, Chaohe Yang. Hybrid modelling incorporating reaction and mechanistic data for accelerating the development of isooctanol oxidation[J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 166-183.
Xin Zhou, Ce Liu, Zhibo Zhang, Xinrui Song, Haiyan Luo, Weitao Zhang, Lianying Wu, Hui Zhao, Yibin Liu, Xiaobo Chen, Hao Yan, Chaohe Yang. Hybrid modelling incorporating reaction and mechanistic data for accelerating the development of isooctanol oxidation[J]. 中国化学工程学报, 2025, 80(4): 166-183.
[1] S.A. Belal, D.R. Kang, K.S. Shim, Effects of rumen-protected, long chain fatty acid, calcium salt supplementation on total lipid, fatty acids, and related gene expression in Korean cattle, SA J. An. Sci. 53 (5) (2024) 658-666. [2] H.P. Benecke, S.K. Allen, D.B. Garbark, Efficient fractionation and analysis of fatty acids and their salts in fat, oil and grease (FOG) deposits, J. Oleo Sci. 66 (2) (2017) 123-131. [3] A. Gupta, N.B. Bowden, Separation of cis-fatty acids from saturated and trans-fatty acids by nanoporous polydicyclopentadiene membranes, ACS Appl. Mater. Interfaces 5 (3) (2013) 924-933. [4] A. Hadzich, G.A. Gross, M. Leimbach, A. Ispas, A. Bund, S. Flores, Effect of polyalcohols on the anticorrosive behaviour of alkyd coatings prepared with drying oils, Prog. Org. Coat. 145 (2020) 105671. [5] A. Gomez-Siurana, F. Ruiz-Bevia, J. Fernandez-Sempere, E. Torregrosa-Fuerte, Purification of phosphoric acid by extraction with 2-ethyl-1-hexanol: equilibrium data and mass transfer coefficients, Ind. Eng. Chem. Res. 40 (3) (2001) 892-897. [6] F. Taddeo, R. Vitiello, R. Tesser, M. Melchiorre, K. Eranen, T. Salmi, V. Russo, M. Di Serio, Nonanoic acid esterification with 2-ethylhexanol: from batch to continuous operation, Chem. Eng. J. 444 (2022) 136572. [7] Y. Li, X.H. Liu, H.L. An, X.Q. Zhao, Y.J. Wang, One-pot sequential aldol condensation and hydrogenation of n-butyraldehyde to 2-ethylhexanol, Ind. Eng. Chem. Res. 55 (22) (2016) 6293-6299. [8] Y. Ichikawa, S.I. Hirano, B. Sato, H. Yamamoto, Y. Takefuji, F. Satoh, Guidelines for the selection of hydrogen gas inhalers based on hydrogen explosion accidents, Med. Gas Res. 13 (2) (2023) 43-48. [9] J. Kwak, H. Lee, S. Park, J. Park, S. Jung, Risk assessment of a hydrogen refueling station in an urban area, Energies 16 (9) (2023) 3963. [10] B. Park, Y. Kim, Reenacting the hydrogen tank explosion of a fuel-cell electric vehicle: an experimental study, Int. J. Hydrog. Energy 48 (89) (2023) 34987-35003. [11] X.Y. Wang, W. Gao, Hydrogen leakage risk assessment for hydrogen refueling stations, Int. J. Hydrog. Energy 48 (91) (2023) 35795-35808. [12] T.T. Ma, S.F. Zhao, W.W. Tang, W.W. Zhong, Y.H. Liu, Y.R. Feng, Z. Fang, H. Qin, H. Xu, Y.G. Li, Y. Zhao, F.R. Meng, L. Yi, W. He, K. Guo, Microreactors with multivariate external force field used for the chemical process intensification, Chem. Eng. J. 493 (2024) 152508. [13] Z.Z. Sun, X. Zhou, Z.N. Song, H. Yan, Y.X. Tuo, Y.B. Liu, H. Zhao, X.B. Chen, X. Feng, D. Chen, C.H. Yang, Numerical calculation of flow and reaction safety with different particle sizes in a fixed bed reactor for propene epoxidation with H2 and O2, Chem. Eng. Sci. 277 (2023) 118777. [14] X.H. Zhang, Z. Chen, J. Chen, J.H. Xu, Liquid-phase oxidation of cyclohexane with air in a microreactor: Kinetics and process intensification, Chem. Eng. Sci. 288 (2024) 119777. [15] A.A.H. Laporte, T.M. Masson, S.D.A. Zondag, T. Noel, Multiphasic continuous-flow reactors for handling gaseous reagents in organic synthesis: enhancing efficiency and safety in chemical processes, Angew. Chem. Int. Ed 63 (11) (2024) e202316108. [16] C.S. Li, H.C. Zhang, W.X. Liu, L. Sheng, M.J. Cheng, B.J. Xu, G.S. Luo, Q. Lu, Efficient conversion of propane in a microchannel reactor at ambient conditions, Nat. Commun. 15 (1) (2024) 884. [17] S.Y. Chen, J. Verding, X.J. Lang, Y. Ouyang, G.J. Heynderickx, K.M. Van Geem, Advances in design of internals: applications in conventional and process intensification units, Chem. Eng. Process. Process. Intensif. 201 (2024) 109806. [18] P. Du, J.A. Venkidasalapathy, S. Venkateswaran, B. Wilhite, C. Kravaris, Model-based fault diagnosis and fault tolerant control for safety-critical chemical reactors: a case study of an exothermic continuous stirred-tank reactor, Ind. Eng. Chem. Res. 62 (34) (2023) 13554-13571. [19] U. Gnadinger, D. Poier, C. Trombini, M. Dabros, R. Marti, Development of lab-scale continuous stirred-tank reactor as flow process tool for oxidation reactions using molecular oxygen, Org. Process Res. Dev. 28 (5) (2024) 1860-1868. [20] J.Y. Ni, J.Q. Si, T. Lan, W.D. Sun, G.F. Zhao, Y. Liu, Y. Lu, Mn2O3-Na3PO4/TiO2 catalyst with high anti-agglomeration and attrition resistance for fluidized-bed oxidative coupling of methane, Fuel 356 (2024) 129613. [21] S.D. Pollington, B.S. Kalirai, E.H. Stitt, Batch to continuous: from laboratory recycle trickle bed test reactor data to full-scale plant preliminary design: a case study based on the hydrogenation of resorcinol, Processes 12 (5) (2024) 859. [22] A. Milewska, E.J. Molga, CFD simulation of accidents in industrial batch stirred tank reactors, Chem. Eng. Sci. 62 (18-20) (2007) 4920-4925. [23] Z. Jaworski, A.W. Nienow, CFD modelling of continuous precipitation of barium sulphate in a stirred tank, Chem. Eng. J. 91 (2-3) (2003) 167-174. [24] Y.Y. Hui, X. Feng, X.X. Duan, Z.S. Mao, C. Yang, Experimental and numerical study on the residence time distribution in a stirred membrane reactor, Ind. Eng. Chem. Res. 62 (16) (2023) 6486-6499. [25] T. Meng, Y. Wang, S.S. Wang, S. Qin, Q. Zhang, Y.D. Wang, C.Y. Tao, Y.Q. Xu, Z.H. Liu, Exploration of multishafts stirred reactors: an investigation on experiments and large eddy simulations for turbulent chaos and mixing characteristics, Ind. Eng. Chem. Res. 63 (5) (2024) 2441-2456. [26] J. Kersebaum, S. Flaischlen, D. Julia Hofinger, P.D.I G.D. Wehinger, Simulating stirred tank reactor characteristics with a lattice Boltzmann CFD code, Chem. Eng. Technol. 47 (3) (2024) 586-595. [27] R. Kumari, B. Kasina, R. Gupta, H.J. Pant, R.K. Upadhyay, Effect of novel mixed impeller on local bubble size and flow regime transition in pilot scale gas-liquid stirred tank reactor, Chem. Prod. Process. Model. 19 (2) (2024) 229-249. [28] B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, Z.H. Lin, When machine learning meets privacy: a survey and outlook, ACM Comput. Surv. 54 (2)20211-20236. [29] C.W. Coley, D.A. Thomas 3rd, J.A.M. Lummiss, J.N. Jaworski, C.P. Breen, V. Schultz, T. Hart, J.S. Fishman, L. Rogers, H.Y. Gao, R.W. Hicklin, P.P. Plehiers, J. Byington, J.S. Piotti, W.H. Green, A. John Hart, T.F. Jamison, K.F. Jensen, A robotic platform for flow synthesis of organic compounds informed by AI planning, Science 365 (6453) (2019) eaax1566. [30] M.H.S. Segler, M. Preuss, M.P. Waller, Planning chemical syntheses with deep neural networks and symbolic AI, Nature 555 (7698) (2018) 604-610. [31] B.S. Chew, N.N. Trinh, D.T. Koch, E. Borras, M.K. LeVasseur, L.A. Simms, M.M. McCartney, P. Gibson, N.J. Kenyon, C.E. Davis, Data-driven approach to modeling microfabricated chemical sensor manufacturing, Anal. Chem. 96 (1) (2024) 364-372. [32] J.M. Cole, How the shape of chemical data can enable data-driven materials discovery, Trends Chem. 3 (2) (2021) 111-119. [33] E.G. Nabati, S. Engell, Data-driven adaptive robust control of a CSTR, 2012 16th IEEE Mediterranean Electrotechnical Conference. March 25-28, 2012, Yasmine Hammamet, Tunisia. IEEE, (2012) 946-949. [34] B.W. Nyande, Z.K. Nagy, R. Lakerveld, Data-driven identification of crystallization kinetics, AIChE. J. 70 (5) (2024) e18333. [35] L.T. Zhu, X.Z. Chen, B. Ouyang, W.C. Yan, H. Lei, Z. Chen, Z.H. Luo, Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors, Ind. Eng. Chem. Res. 61 (28) (2022) 9901-9949. [36] B. Ouyang, L.T. Zhu, Z.H. Luo, Machine learning for full spatiotemporal acceleration of gas-particle flow simulations, Powder Technol. 408 (2022) 117701. [37] Y.J. Shi, J. Wang, Q. Wang, Q.Z. Jia, F.Y. Yan, Z.H. Luo, Y.N. Zhou, Supervised machine learning algorithms for predicting rate constants of ozone reaction with micropollutants, Ind. Eng. Chem. Res. 61 (24) (2022) 8359-8367. [38] L.T. Zhu, B. Ouyang, H. Lei, Z.H. Luo, Conventional and data-driven modeling of filtered drag, heat transfer, and reaction rate in gas-particle flows, AIChE. J. 67 (8) (2021) e17299. [39] L. Rajulapati, S. Chinta, B. Shyamala, R. Rengaswamy, Integration of machine learning and first principles models, AIChE. J. 68 (6) (2022) e17715. [40] N. Sharma, Y.A. Liu, A hybrid science-guided machine learning approach for modeling chemical processes: a review, AIChE. J. 68 (5) (2022) e17609. [41] I.B. Aka, M. Iscan, An AI-accelerated CFD application on a benchmark device: FDA nozzle, 2022 Medical Technologies Congress (TIPTEKNO)., Antalya, Turkey. IEEE, 2022. [42] J. Jeon, J. Lee, R. Vinuesa, S.J. Kim, Residual-based physics-informed transfer learning: a hybrid method for accelerating long-term CFD simulations via deep learning, Int. J. Heat Mass Transf. 220 (2024) 124900. [43] D. Kochkov, J.A. Smith, A. Alieva, Q. Wang, M.P. Brenner, S. Hoyer, Machine learning-accelerated computational fluid dynamics, Proc. Natl. Acad. Sci. USA 118 (21) (2021) e2101784118. [44] S. Sathyanarayanan, S. Suresh, M. Sridharan, Application of CFD and ANN in predicting the flow nature of flue gas in the catalytic converter, J. Sci. Ind. Res. 81 (1) (2022): 51-59. [45] X.Z. Zhao, H.A. Fan, G.B. Lin, Z.C. Fang, W.L. Yang, M. Li, J.H. Wang, X.Y. Lu, B.L. Li, K.J. Wu, J. Fu, Multi-objective optimization of radially stirred tank based on CFD and machine learning, AIChE. J. 70 (3) (2024) e18324. [46] C. Li, Oxidative dehydrogenation of 2-ethylhexanol to prepare 2-ethylhexanoic acid, J. Fuzhou Univ. (Nat. Sci. Ed.), 25 (3) (1997) 118-121. [47] S.H. Shabbeer Basha, S.R. Dubey, V. Pulabaigari, S. Mukherjee, Impact of fully connected layers on performance of convolutional neural networks for image classification, Neurocomputing 378 (2020) 112-119. [48] K.R. Ganju, Q. Wang, W. Yang, C.A. Gunter, N. Borisov, K.R. Ganju, Q. Wang, W. Yang, C.A. Gunter, N. Borisov, Property inference attacks on fully connected neural networks using permutation invariant representations, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. Toronto, Canada, 2018. [49] F.M. Huang, J. Zhang, C.B. Zhou, Y.H. Wang, J.S. Huang, L. Zhu, A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction, Landslides 17 (1) (2020) 217-229. [50] C.L. Zhu, J.T. Wang, Process structure-based fully connected neural network for the modelling of chemical processes: a comparison between global and modular configurations, J. Taiwan Inst. Chem. Eng. 157 (2024) 105430. [51] M. Soroush, E. Simsek, G. Moille, K. Srinivasan, C.R. Menyuk, Predicting broadband resonator-waveguide coupling for microresonator frequency combs through fully connected and recurrent neural networks and attention mechanism, ACS Photonics 10 (6) (2023) 1795-1805. [52] P.Y. Li, T.L. Zheng, L. Li, X.Y. Lv, W.J. Wu, Z.N. Shi, X.Q. Zhou, G.T. Zhang, Y.Q. Ma, J.X. Liu, Simulating and predicting the performance of a horizontal subsurface flow constructed wetland using a fully connected neural network, J. Clean. Prod. 380 (2022) 134959. [53] W.X. Hu, L.X. Guan, M.S. Li, Prediction of DNA Methylation based on Multi-dimensional feature encoding and double convolutional fully connected convolutional neural network, PLoS Comput. Biol. 19 (8) (2023) e1011370. [54] M. Asfand-E-Yar, Q. Hashir, A.A. Shah, H.A.M. Malik, A. Alourani, W. Khalil, Multimodal CNN-DDI: using multimodal CNN for drug to drug interaction associated events, Sci. Rep. 14 (1) (2024) 4076. [55] Y. Wang, Y.B. Sun, Z.W. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic graph CNN for learning on point clouds, ACM Trans. Graph. 38 (5) (2019) 1-12. [56] Z.M. Li, Y.Y. Xu, D.F. Ke, K.L. Su, PLDE: a lightweight pooling layer for spoken language recognition, Speech Commun. 158 (2024) 103055. [57] S.A. Khadem, A.D. Rey, Nucleation and growth of cholesteric collagen tactoids: a time-series statistical analysis based on integration of direct numerical simulation (DNS) and long short-term memory recurrent neural network (LSTM-RNN), J. Colloid Interface Sci. 582 (Pt B) (2021) 859-873. [58] C.H. Qi, S. Huang, X.F. Wang, Monitoring water quality parameters of Taihu Lake based on remote sensing images and LSTM-RNN, IEEE Access 8 (2020) 188068-188081. [59] S. Singh, S.S. Kasana, Quantitative estimation of soil properties using hybrid features and RNN variants, Chemosphere 287 (2022) 131889. [60] H. Kim, M. Park, C.W. Kim, D. Shin, Source localization for hazardous material release in an outdoor chemical plant via a combination of LSTM-RNN and CFD simulation, Comput. Chem. Eng. 125 (2019) 476-489. |
[1] | Li Wang, Shibo Wang, Huiqiang Yang, Yuling Zhai, Jianxin Xu. Research on fluid motion characteristics and structural evolution in reciprocating mixing tanks [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 120-134. |
[2] | Lingbing Bu, Li Guo, Yingqi Luo, Wenhua Yin, Yi Wu, Hongyu Zhang. Oxygen distribution in bed and safety analysis during hydrogen purification process from oxygen-containing feed gas [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 24-32. |
[3] | Jing Chen, Wenqi Zhong, Guanwen Zhou, Jinming Li, Shasha Ding. Desulfurization characteristics of slaked lime and regulation optimization of circulating fluidized bed flue gas desulfurization process—A combined experimental and numerical simulation study [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 163-175. |
[4] | Yujing Zhao, Qilei Liu, Jian Du, Qingwei Meng, Liang Sun, Lei Zhang. Accelerating Factor Xa inhibitor discovery with a de novo drug design pipeline [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 85-94. |
[5] | Huashuai Wu, Gang Wang, Yong Yang, Yongwang Li. Modeling analysis of cobalt-based Fischer-Tropsch catalyst particles [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 82-92. |
[6] | Chengtian Wang, Hongbo Shi, Bing Song, Yang Tao. Hierarchical multihead self-attention for time-series-based fault diagnosis [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 104-117. |
[7] | Chen Han, Youmin Situ, Huaxing Zhu, Jianliang Xu, Zhenghua Dai, Guangsuo Yu, Haifeng Liu. Influence of syngas components and ash particles on the radiative heat transfer in a radiant syngas cooler [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 203-215. |
[8] | Kang Liu, You Fan, Juan Chen. A model free adaptive control method based on self-adjusting PID algorithm in pH neutralization process [J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 227-236. |
[9] | Hongbo Tan, Boshi Shao, Na Wen. Numerical study of the deep removal of R134a from non-condensable gas mixture by cryogenic condensation and de-sublimation [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 180-191. |
[10] | Jiahao Xing, Huaizhi Han, Ruitian Yu, Wen Luo. Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 173-185. |
[11] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[12] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[13] | Jikai Dong, Bing Wang, Xinjie Wang, Chenxi Cao, Shikuan Chen, Wenli Du. Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 169-179. |
[14] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[15] | Xupeng Chen, Jintao Wu, Jianfei Sun, Kunpeng Yu, Jianzhong Yin. Numerical investigation of film forming characteristics and mass transfer enhancement in horizontal polycondensation kettle [J]. Chinese Journal of Chemical Engineering, 2023, 63(11): 31-42. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 7
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 23
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||