[1] G.K. Nie, Y.Y. Dai, Y.N. Liu, J.J. Xie, S. Gong, N. Afzal, X.W. Zhang, L. Pan, J.J. Zou, High yield one-pot synthesis of high density and low freezing point jet-fuel-ranged blending from bio-derived phenol and cyclopentanol, Chem. Eng. Sci. 207 (2019) 441-447. [2] X.Y. Wang, T.H. Jia, L. Pan, Q. Liu, Y.M. Fang, J.J. Zou, X.W. Zhang, Review on the relationship between liquid aerospace fuel composition and their physicochemical properties, Trans. Tianjin Univ. 27 (2) (2021) 87-109. [3] Q. Deng, P.J. Han, J.S. Xu, J.J. Zou, L. Wang, X.W. Zhang, Highly controllable and selective hydroxyalkylation/alkylation of 2-methylfuran with cyclohexanone for synthesis of high-density biofuel, Chem. Eng. Sci. 138 (2015) 239-243. [4] P.K. Rout, A.D. Nannaware, O. Prakash, A. Kalra, R. Rajasekharan, Synthesis of hydroxymethylfurfural from cellulose using green processes: a promising biochemical and biofuel feedstock, Chem. Eng. Sci. 142 (2016) 318-346. [5] J.J. Xie, X.W. Zhang, C.X. Shi, L. Pan, F. Hou, G.K. Nie, J.W. Xie, Q. Liu, J.J. Zou, Self-photosensitized [2 + 2] cycloaddition for synthesis of high-energy-density fuels, Sustain. Energy Fuels 4 (2) (2020) 911-920. [6] Z.Y. Zhang, Z.Y. Liu, R.T. Guo, Y.Q. Zhao, X. Li, X.C. Wang, B(C6 F5)3-catalyzed ring opening and isomerization of unactivated cyclopropanes, Angew. Chem. Int. Ed 56 (14) (2017) 4028-4032. [7] J.N. Zhao, J.L. Brosmer, Q.X. Tang, Z.Y. Yang, K.N. Houk, P.L. Diaconescu, O. Kwon, Intramolecular crossed [2+2] photocycloaddition through visible light-induced energy transfer, J. Am. Chem. Soc. 139 (29) (2017) 9807-9810. [8] P. Ibarra-Gonzalez, B.G. Rong, A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes, Chin. J. Chem. Eng. 27 (7) (2019) 1523-1535. [9] Y. Liu, Y. Chen, S. Ma, X.L. Liu, X.W. Zhang, J.J. Zou, L. Pan, Synthesis of advanced fuel with density higher than 1 g/mL by photoinduced [2 + 2] cycloaddition of norbornene, Fuel 318 (2022) 123629. [10] I. Palmova, J. Kosek, J. Schongut, M. Marek, S. K, Experimental and modeling studies of oligomerization and copolymerization of dicyclopentadiene, Chem. Eng. Sci. 56 (3) (2001) 927-935. [11] J.D. Dunitz, V. Schomaker, The molecular structure of cyclobutane, 20 (11) (1952) 1703-1707. [12] D.M. Morris, R.L. Quintana, B.G. Harvey, High-performance jet fuels derived from bio-based alkenes by iron-catalyzed [2+2] cycloaddition, ChemSusChem 12 (8) (2019) 1646-1652. [13] R. Brimioulle, T. Bach, Enantioselective Lewis acid catalysis of intramolecular enone [2+2] photocycloaddition reactions, Science 342 (6160) (2013) 840-843. [14] L. Buglioni, F. Raymenants, A. Slattery, S.D.A. Zondag, T. Noel, Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry, Chem. Rev. 122 (2) (2022) 2752-2906. [15] J. Sivaguru, T. Bach, V. Ramamurthy, Keeping the Name clean: [2 + 2] photocycloaddition, Photochem. Photobiol. Sci. 21 (8) (2022) 1333-1340. [16] G. Quach, H. Iranmanesh, E.T. Luis, J.B. Harper, J.E. Beves, E.G. Moore, Mechanistic and kinetic insights into intermolecular [2+2] photocycloadditions, ACS Catal. 14 (11) (2024) 8758-8766. [17] M.R. Becker, E.R. Wearing, C.S. Schindler, Synthesis of azetidines via visible-light-mediated intermolecular [2+2] photocycloadditions, Nat. Chem. 12 (10) (2020) 898-905. [18] Y.Y. Yang, J. Tsien, J.M.E. Hughes, B.K. Peters, R.R. Merchant, T. Qin, An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates, Nat. Chem. 13 (10) (2021) 950-955. [19] T. Rigotti, T. Bach, Bicyclo [2.1.1] hexanes by visible light-driven intramolecular crossed [2 + 2] photocycloadditions, Org. Lett. 24 (48) (2022) 8821-8825. [20] C.F. Ryan, C.M. Moore, J.H. Leal, T.A. Semelsberger, J.K. Banh, J.Q. Zhu, C.S. McEnally, L.D. Pfefferle, A.D. Sutton, Synthesis of aviation fuel from bio-derived isophorone, Sustain. Energy Fuels 4 (3) (2020) 1088-1092. [21] J.X. Hu, X.L. Liu, Y. Liu, K. Xue, C.X. Shi, X.W. Zhang, L. Wang, J.J. Zou, L. Pan, Photoinduced transposed Paterno-Buchi reaction for effective synthesis of high-performance jet fuel, Chin. J. Chem. Eng. 67 (2024) 39-48. [22] J.J. Xie, L. Pan, G.K. Nie, J.W. Xie, Y.K. Liu, C. Ma, X.W. Zhang, J.J. Zou, Photoinduced cycloaddition of biomass derivatives to obtain high-performance spiro-fuel, Green Chem. 21 (21) (2019) 5886-5895. [23] R. Yu, Z.S. Shen, Y.N. Liu, C.X. Shi, J.C. Qu, L. Pan, Z.F. Huang, X.W. Zhang, J.J. Zou, Tandem hydroalkylation and deoxygenation of lignin-derived phenolics to synthesize high-density fuels, Chin. J. Chem. Eng. 66 (2024) 104-109. [24] Y. Chen, Y.M. Shu, M.H. Ai, W.B. Chen, C.W. Liu, S.Y. Zhang, S.J. Wang, H.P. Shi, J.J. Zou, L. Pan, Mechanism of Broensted-acid-promoted self-photosensitized [2+2] cycloaddition for synthesis of high-performance bio-spiral fuel, Green Energy Environ., https://doi.org/10.1016/j.gee.2024.05.006 (2024). [25] Y. Chen, X.F. Zhang, X.L. Guo, M.H. Ai, Y.M. Shu, C.X. Shi, X.W. Zhang, J.J. Zou, L. Pan, Mechanism and kinetics of self-sensitized photocycloaddition of cyclohexenone and norbornene, AlChE. J. 70 (5) (2024) e18369. [26] Y.C. Hu, Y.Y. Zhao, N. Li, J.P. Cao, Sustainable production of high-energy-density jet fuel via cycloaddition reactions, J. Energy Chem. 95 (2024) 712-722. [27] L. Huang, W.T. Wu, Y. Li, K. Huang, L. Zeng, W.H. Lin, G. Han, Highly effective near-infrared activating triplet-triplet annihilation upconversion for photoredox catalysis, J. Am. Chem. Soc. 142 (43) (2020) 18460-18470. [28] N. Kanamaru, Radiationless transition between randomly fluctuating levels. S1-T2-T1 intersystem crossing in condensed phase, Bull. Chem. Soc. Jpn. 55 (10) (1982) 3093-3096. [29] J.T. Nicholas, V. Ramamurthy and Juan, C. Scaiano, Modern molecular photochemistry of organic molecules., Angew. Chem. Int. Ed. 49 (38) (2010) 6709-6710. [30] J.J. Xie, X.W. Zhang, L. Pan, G.K. Nie, E. Xiu-Tian-Feng, Q. Liu, P. Wang, Y.F. Li, J.J. Zou, Renewable high-density spiro-fuels from lignocellulose-derived cyclic ketones, Chem. Commun. 53 (74) (2017) 10303-10305. [31] R.J. Stedman, L.S. Miller, L.D. Davis, J.R.E. Hoover, Synthetic studies related to the bird-cage system. III. Derivatives of pentacyclo [5.4.0.02, 6.03, 10.05, 9] undecane, tetracyclo [4.4.0.0.3, 9.04, 8] decane, and pentacyclo [4.4.0.02, 5.03, 9.04, 8] decane, J. Org. Chem. 35 (12) (1970) 4169-4175. [32] A.P. Marchand, R.W. Allen, Improved synthesis of pentacyclo [5.4.0.02, 6.03, 10.05, 9] undecane, J. Org. Chem. 39 (11) (1974) 1596. [33] J.R. Bell, N.B. Chapman, K.J. Toyne, The preparation and properties of cage polycyclic systems: III The cleavage in alkaline conditions of acetals derived from pentacyclo [5.3.0.02, 5.03, 9.04, 8] decane and pentacyclo [4.3.0.02, 5.03, 8.04, 7] nonane systems, Tetrahedron 31 (15) (1975) 1683-1688. [34] G.L. Dunn, V.J. DePasquo, J.R.E. Hoover, Synthesis of pentacyclo [4.3.0.02, 5.02, 8.04, 7] nonane (homocubane) and some of its derivatives, J. Org. Chem. 33 (4) (1968) 1454-1459. [35] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (18) (2009) 6378-6396. [36] J.N. Harvey, M. Aschi, H. Schwarz, W. Koch, The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces, Theor. Chem. Acc. 99 (2) (1998) 95-99. [37] S. Poplata, A. Troster, Y.Q. Zou, T. Bach, Recent advances in the synthesis of cyclobutanes by olefin [2 + 2] photocycloaddition reactions, Chem. Rev. 116 (17) (2016) 9748-9815. [38] G.S. Hammond, P. Wyatt, C.D. DeBoer, N.J. Turro, Photosensitized isomerization involving saturated centers, J. Am. Chem. Soc. 86 (12) (1964) 2532-2533. [39] Y.H. Su, V. Hessel, T. Noel, A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations, AIChE. J. 61 (7) (2015) 2215-2227. [40] P.J. Wagner, Conformational changes involved in the singlet-triplet transitions of biphenyl, J. Am. Chem. Soc. 89 (12) (1967) 2820-2825. [41] G. Baryshnikov, B. Minaev, H. Agren, Theory and calculation of the phosphorescence phenomenon, Chem. Rev. 117 (9) (2017) 6500-6537. [42] M.H. Gehlen, The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map, J. Photochem. Photobiol. C Photochem. Rev. 42 (2020) 100338. [43] E.P. Dr, B.W. Knettle Dr, R.A. Flowers II Prof, Photoinduced electron transfer reactions by SmI2 in THF: luminescence quenching studies and mechanistic investigations, Chem. 11 (10) (2005) 3105-3112. [44] P. Pracht, C. Bannwarth, Finding excited-state minimum energy crossing points on a budget: non-self-consistent tight-binding methods, J. Phys. Chem. Lett. 14 (19) (2023) 4440-4448. [45] M. Zhu, X. Zhang, C. Zheng, S.L. You, Visible-light-induced dearomatization via [2+2] cycloaddition or 1, 5-hydrogen atom transfer: divergent reaction pathways of transient diradicals, ACS Catal. 10 (21) (2020) 12618-12626. [46] L. Pan, R. Feng, H. Peng, X.T.F. E, J.J. Zou, L. Wang, X.W. Zhang, A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel, RSC Adv. 4 (92) (2014) 50998-51001. [47] J.J. Zou, Y. Liu, L. Pan, L. Wang, X.W. Zhang, Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated Ti-MCM-41, Appl. Catal. B Environ. 95 (3-4) (2010) 439-445. |