[1] S.A. Hoedl, Achieving a social license for fusion energy, Phys. Plasmas 29 (9) (2022) 092506. [2] L. Rajablou, S.M. Motevalli, F. Fadaei, Study of alpha particle concentration effects as the ash of deuterium-tritium fusion reaction on ignition criteria, Phys. Scr. 97 (9) (2022) 095601. [3] M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, I.R. Cristescu, I. Cristescu, C. Day, L. Doerr, J.P. Girard, E. Tada, The ITER tritium systems, Fusion Eng. Des. 82 (5-14) (2007) 472-487. [4] B.Y. Kim, A. Bommenel, L.M. Giancarli, D. Hamilton, E. Quinn, P. Talbot, Overview of recent ITER TBM port plug R&D activities, Fusion Eng. Des. 189 (2023) 113443. [5] P.H. Zhao, W.L. Yang, Y.J. Li, Z.H. Ge, X.C. Nie, Z.P. Gao, Tritium transport analysis for CFETR WCSB blanket, Fusion Eng. Des. 114 (2017) 26-32. [6] S.J. Cui, D.L. Zhang, Q. Lian, J. Cheng, W.X. Tian, G.H. Su, S.Z. Qiu, Evaluation and optimization of tritium breeding, shielding and nuclear heating performances of the helium cooled solid breeder blanket for CFETR, Int. J. Hydrog. Energy 42 (38) (2017) 24263-24277. [7] L. Giannini, D. Boso, V. Corato, L. Muzzi, A. della Corte, Engineering the main structures of the DEMO fusion reactor magnet system, IEEE Trans. Appl. Supercond. 32 (6) (2022) 4200705. [8] H. Zohm, Assessment of DEMO challenges in technology and physics, Fusion Eng. Des. 88 (6-8) (2013) 428-433. [9] G. Jiang, D. Luo, G. Lu, L. Sun, Tritium and industry techniques of tritium, National Defense Industry Press, Beijing, 2007, in Chinese. [10] X. Deng, R. Xiong, X. Yan, W. Luo, Development of new materials for hydrogen isotopes separation, Mater. Rep. 37 (2023) 21080180, in Chinese. [11] G. Neffe, U. Besserer, J. Dehne, E. Hutter, H. Kissel, R.D. Penzhorn, J. Wendel, H. Brunnader, Routine operation of the gas chromatographic isotope separation system of the Tritium Laboratory Karlsruhe, Fusion Eng. Des. 39 (1998) 987-993. [12] W.L. Luyben, Design and control of refrigerated-purge distillation columns, Ind. Eng. Chem. Res. 43 (25) (2004) 8133-8140. [13] B. Xie, X.L. Xia, Y.N. Liu, K.P. Weng, J.P. Hou, R. Guan, Hydrogen isotopes separation by combined cryogenic distillation with cryogenic gas chromatograph, Cryogenics (6) (2007) 43-46. [14] X. Deng, Study on hydrogen isotopes separation using frontal displacement chromatography, Master’s Thesis, China Academy of Engineering Physics, China, 2010, in Chinese. [15] H. Fujiwara, S. Fukada, Y. Yamaguchi, Hydrogenating rates of twin columns packed with Pd and molecular sieve with an alternately counter-current flow for hydrogen isotope separation, Int. J. Hydrog. Energy 25 (2) (2000) 127-132. [16] J. Noh, A.M. Fulgueras, L.J. Sebastian, H.G. Lee, D.S. Kim, J. Cho, Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator, J. Ind. Eng. Chem. 46 (2017) 1-8. [17] G.T. Huang, D.G. Wang, L. Hu, J.C. Bao, Y.Q. Song, X.Y. Yan, R.J. Xiong, T. Tang, W.H. Luo, Thermal cycling absorption process: A simple, efficient and safe strategy for hydrogen isotope separation, Int. J. Hydrog. Energy 57 (2024) 8-25. [18] J.B. Zhou, X. Zhang, S. Hao, W.J. Huang, Dynamic simulation of thermal cycling absorption process with twin columns for hydrogen isotopes separation, Int. J. Hydrog. Energy 39 (25) (2014) 13873-13879. [19] L. Deng, C.G. Chen, G.Q. Huang, Y. Shi, Y. Yao, J. Hu, K.L. Chen, Y.T. An, J.F. Song, The oil bath thermal cycling absorption process design and separation process research, Int. J. Hydrog. Energy 48 (58) (2023) 22132-22140. [20] X. Xiao, L.K. Heung, H.T. Sessions, Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process, Fusion Sci. Technol. 67 (3) (2015) 643-646. [21] A.B. Sazonov, E.P. Magomedbekov, Estimate of the efficiency of hydrogen-metal hydride (intermetallic compound) systems in the separation of the three-isotope mixtures H-D-T, At. Energy 89 (3) (2000) 736-744. [22] X. Deng, D. Luo, X. Qian, Development of separation materials containing palladium for hydrogen isotopes separation, J. Isotop. 23 (2010) 53-58. [23] Y.T. Liu, W.Q. Wu, Y.F. Xiong, G.H. Zhang, Y.J. Wei, M.Q. Fang, T. Tang, Protium removal from deuterium-tritium mixture with displacement chromatography method: Experiments and simulations, Int. J. Hydrog. Energy 44 (7) (2019) 3824-3833. [24] Y.T. Liu, W.Q. Wu, G.H. Zhang, M.Q. Fang, W.Y. Jing, Y.F. Xiong, R.J. Xiong, T. Tang, Study of separation factor and product extraction ratio in hydrogen isotope separation with displacement chromatography, Fusion Eng. Des. 165 (2021) 112246. [25] Y. Lei, X.P. Liu, S. Li, L.J. Jiang, C. Zhang, S. Li, D. He, S.M. Wang, High stability of palladium/kieselguhr composites during absorption/desorption cycling for hydrogen isotope separation, Fusion Eng. Des. 113 (2016) 260-264. [26] Q. Lei, Preparation of palladium supported on kieselgur for hydrogen isotopes separation and its properties on hydrogen-absorbing and desorbing, Master’s Thesis, China Academy of Engineering Physics, China, 2004, in Chinese. [27] X.J. Qian, Y.F. Xiong, G.Q. Huang, Y.C. Rao, Application of palladium in hydrogen isotopes separation and purification, At. Energy Sci. Technol. 40 (2) (2006) 212-217. [28] L.K. Heung, H.T. Sessions, X. Xiao, H.L. Mentzer, Demonstration of the next-generation TCAP hydrogen isotope separation process, Fusion Sci. Technol. 56 (4) (2009) 1471-1475. [29] N. Lin, J.L. Wu, X.Q. Ye, C.L. Jiang, Q. Li, C.G. Chen, Thermodynamic and kinetic isotope effects on hydrogen absorption by Pd-Al2O3 pellets, Int. J. Hydrog. Energy 50 (2024) 21-29. [30] G. Zhang, Fabrication and performance of Pd-loaded alumina material towards hydrogen isotope separation, Master’s Thesis, Beijing University of Chemical Technology, China, 2022, in Chinese. [31] X.J. Deng, D.L. Luo, C. Qin, X.J. Qian, W. Yang, Hydrogen isotopes separation using frontal displacement chromatography with Pd-Al2O3 packed column, Int. J. Hydrog. Energy 37 (14) (2012) 10774-10778. [32] S. Fukada, M. Samsun-Baharin, H. Fujiwara, Hydrogen absorption-desorption cycle experiment of Pd-Al2O3 pellets, Int. J. Hydrog. Energy 27 (2) (2002) 177-181. [33] Y.T. Liu, R. He, A comprehensive fractal char combustion model, Chin. J. Chem. Eng. 24 (12) (2016) 1750-1760. [34] Y.T. Liu, R. He, Modeling of the pore structure evolution in porous char particles during combustion, Combust. Sci. Technol. 188 (2) (2016) 207-232. [35] Y.T. Liu, R. He, Variation of apparent reaction order in char combustion and its effect on a fractal char combustion model, Combust. Sci. Technol. 187 (10) (2015) 1638-1660. [36] R. He, X.C. Xu, C.H. Chen, H.L. Fan, B. Zhang, Evolution of pore fractal dimensions for burning porous chars, Fuel 77 (12) (1998) 1291-1295. [37] R. He, J. Sato, C.H. Chen, Modeling char combustion with fractal pore effects, Combust. Sci. Tech. 174 (4) (2002) 19-37. |