Chinese Journal of Chemical Engineering ›› 2025, Vol. 87 ›› Issue (11): 19-34.DOI: 10.1016/j.cjche.2025.05.005
Previous Articles Next Articles
Zhihong Chen1, Jiawei Wu1, Wei Zhang1, Wenjing Zhang2, Xiaoling Lou1, Junxian Yun2
Received:2025-03-10
Revised:2025-05-16
Accepted:2025-05-19
Online:2025-05-24
Published:2025-11-28
Contact:
Wei Zhang,E-mail:zhangwei@zjut.edu.cn;Junxian Yun,E-mail:yunjx@zjut.edu.cn
Supported by:Zhihong Chen1, Jiawei Wu1, Wei Zhang1, Wenjing Zhang2, Xiaoling Lou1, Junxian Yun2
通讯作者:
Wei Zhang,E-mail:zhangwei@zjut.edu.cn;Junxian Yun,E-mail:yunjx@zjut.edu.cn
基金资助:Zhihong Chen, Jiawei Wu, Wei Zhang, Wenjing Zhang, Xiaoling Lou, Junxian Yun. Machine learning-assisted characterization of oil micro-displacement hydrodynamics by bionanofluid-flooding in microchannel sand-packed porous media towards enhanced oil recovery[J]. Chinese Journal of Chemical Engineering, 2025, 87(11): 19-34.
Zhihong Chen, Jiawei Wu, Wei Zhang, Wenjing Zhang, Xiaoling Lou, Junxian Yun. Machine learning-assisted characterization of oil micro-displacement hydrodynamics by bionanofluid-flooding in microchannel sand-packed porous media towards enhanced oil recovery[J]. 中国化学工程学报, 2025, 87(11): 19-34.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.05.005
| [1] E.G. Golab, R. Ghamarpoor, F.J. Kondori, S. Hosseini, H.N. Al-Saedi, Synthesis of hydrophobic polymeric surfactant (polyacrylamide/zwitterionic) and its effect on enhanced oil recovery (EOR), Chem. Phys. Impact 9 (2024) 100756. [2] S.H. Habib, R. Yunus, R. Zakaria, D.R. Awang Biak, B.H. Mohamed Jan, Z. Amir, Chemical enhanced oil recovery: Synergetic mechanism of alkali, surfactant and polymer with overview of methyl ester sulfonate as a green alternative for EOR surfactant, Fuel 363 (2024) 130957. [3] A. Azdarpour, M. Norouzpour, M. Nabipour, R.M. Santos, E. Mohammadian, Efficiency of the green surfactant derived from avena sativa plant in the presence of different salts for EOR purposes, J. GeoEnergy 2023 (1) (2023) 9998466. [4] M. Mansouri, E. Jafarbeigi, Y. Ahmadi, S.H. Hosseini, Experimental investigation of the effect of smart water and a novel synthetic nanocomposite on wettability alteration, interfacial tension reduction, and EOR, J. Petrol. Explor. Prod. Technol. 13 (11) (2023) 2251-2266. [5] S. Mohammadi, B.S. Soulgani, M. Jamialahmadi, B. Mokhtari, S. Baghersaei, Ionic liquid application to prevent asphaltene precipitation and deposition during water-based EOR techniques, Energy Fuels 37 (17) (2023) 12728-12743. [6] S.S.N. Bajgirani, A.H.S. Dehaghani, Experimental investigation of wettability alteration, IFT reduction, and injection schemes during surfactant/smart water flooding for EOR application, Sci. Rep. 13 (1) (2023) 11362. [7] M. Norouzpour, A. Azdarpour, M. Nabipour, R.M. Santos, A.K. Manshad, S. Iglauer, H. Akhondzadeh, A. Keshavarz, Red beet plant as a novel source of natural surfactant combined with ‘Smart Water’ for EOR purposes in carbonate reservoirs, J. Mol. Liq. 370 (2023) 121051. [8] A. Rahimi, S. Abedi, S.S. Baneh, A. Roozbahani, M. Razavifar, Evaluation of a novel nanoclay-surfactant-stabilized CO2 foam for EOR applications, Arab. J. Sci. Eng. 48 (12) (2023) 16669-16679. [9] X.Y. Hou, J.J. Sheng, Properties, preparation, stability of nanoemulsions, their improving oil recovery mechanisms, and challenges for oil field applications: A critical review, Geoenergy Sci. Eng. 221 (2023) 211360. [10] N. Kumar, A. Verma, A. Mandal, Formation, characteristics and oil industry applications of nanoemulsions: A review, J. Petrol. Sci. Eng. 206 (2021) 109042. [11] P. Pillai, R.K. Saw, A. Mandal, Formulation and characterization of ionic liquid-based nanoemulsion for enhanced oil recovery applications, J. Mol. Liq. 397 (2024) 124189. [12] A. Mandal, A. Bera, K. Ojha, T. Kumar, Characterization of surfactant stabilized nanoemulsion and its use in enhanced oil recovery, in: SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 2012, SPE-155406-MS. [13] R. Kashiri, A. Garapov, P. Pourafshary, Effect of pH on the dominant mechanisms of oil recovery by low salinity water in fractured carbonates, Energy Fuels 37 (15) (2023) 10951-10959. [14] Z.X. Liu, Y. Liang, Q. Wang, Y.J. Guo, M. Gao, Z.B. Wang, W.L. Liu, Status and progress of worldwide EOR field applications, J. Petrol. Sci. Eng. 193 (2020) 107449. [15] S. Strand, T. Puntervold, T. Austad, Water based EOR from clastic oil reservoirs by wettability alteration: A review of chemical aspects, J. Petrol. Sci. Eng. 146 (2016) 1079-1091. [16] G.Y. Zhang, R.S. Seright, Hydrodynamic retention and rheology of EOR polymers in porous media, in: SPE International Symposium on Oilfield Chemistry, The Woodlands, USA, 2015, D011S003R006. [17] T.T. Guan, Y.W. Gao, M.M. Pan, Y.W. Wu, S.H. Zhang, L.H. Xu, L.Y. Zhu, J.X. Yun, Slug flow hydrodynamics of immiscible fluids within a rectangular microchannel towards size-controllable fabrication of dextran-based cryogel beads, Chem. Eng. J. 369 (2019) 116-123. [18] W. Zhao, S.H. Zhang, M.Z. Lu, S.C. Shen, J.X. Yun, K.J. Yao, L.H. Xu, D.Q. Lin, Y.X. Guan, S.J. Yao, Immiscible liquid-liquid slug flow characteristics in the generation of aqueous drops within a rectangular microchannel for preparation of poly(2-hydroxyethylmethacrylate) cryogel beads, Chem. Eng. Res. Des. 92 (11) (2014) 2182-2190. [19] T.T. Guan, Q. Yan, L.Z. Wan, S.H. Zhang, L.H. Xu, J.L. Wang, J.X. Yun, Liquid-liquid flow patterns and slug characteristics in cross-shaped square microchannel for cryogel beads preparation, Chem. Eng. Res. Des. 148 (2019) 312-320. [20] J.S. Li, X. Qu, X.B. Lu, L.A. Yang, B.T. Wang, Y.Q. Fan, Microscale multiphase oil displacement simulation and experimental study based on microfluidics approach, Geoenergy Sci. Eng. 244 (2025) 213529. [21] C. Qian, Z.H. Rui, Y.L. Liu, K.H. Zhou, K. Du, Y. Zhao, J.R. Zou, K.P. Song, X.T. Li, Microfluidic investigation on microscopic flow and displacement behavior of CO2 multiphase system for CCUS-EOR in heterogeneous porous media, Chem. Eng. J. 505 (2025) 159135. [22] L.P. Tuok, M. Elkady, A. Zkria, T. Yoshitake, S.A. Abdelkader, D.F. Seyam, A. El-Moneim, A.M.R.F. El-Bab, U.N. Eldemerdash, Experimental investigation of copper oxide nanofluids for enhanced oil recovery in the presence of cationic surfactant using a microfluidic model, Chem. Eng. J. 488 (2024) 151011. [23] Y. Jiang, J.J. Qiu, J.W. Shi, Y.H. Guo, X.J. He, Y.C. Li, B. Bao, Rapid determination of volumetric mass transfer coefficients for CO2-crude oil systems using microfluidics, Ind. Eng. Chem. Res. 63 (25) (2024) 11196-11206. [24] J.W. Shi, L.Y. Tao, Y.H. Guo, X.J. He, Y.C. Li, B. Bao, Visualization of CO2-oil vanishing interface to determine minimum miscibility pressure using microfluidics, Fuel 362 (2024) 130876. [25] X. Chen, X.J. Li, P. Wu, Y.Y. Li, Y.Q. Li, Y.L. Cheng, Z.Y. Liu, J.B. Liu, S. Liu, Pore-scale transport dynamic behavior of microspheres and their mechanisms for enhanced oil recovery, Energy Fuels 38 (4) (2024) 2803-2815. [26] Y.S. Liu, B. Wei, J. Hou, F.Q. Yuan, Y. Xue, Study on time-varying characteristics and flow behavior of microencapsulated polymer, Fuel 366 (2024) 131372. [27] X.Z. Zhao, Y.J. Feng, G.Z. Liao, W.D. Liu, Visualizing in situ emulsification in porous media during surfactant flooding: A microfluidic study, J. Colloid Interface Sci. 578 (2020) 629-640. [28] S. Gogoi, S.B. Gogoi, Review on microfluidic studies for EOR application, J. Petrol. Explor. Prod. Technol. 9 (3) (2019) 2263-2277. [29] M. Fani, P. Pourafshary, P. Mostaghimi, N. Mosavat, Application of microfluidics in chemical enhanced oil recovery: A review, Fuel 315 (2022) 123225. [30] K. Wang, Q. You, Q.M. Long, B. Zhou, P. Wang, Experimental study of the mechanism of nanofluid in enhancing the oil recovery in low permeability reservoirs using microfluidics, Petrol. Sci. 20 (1) (2023) 382-395. [31] M.M. Cheng, G.L. Lei, J.B. Gao, T. Xia, H.S. Wang, Laboratory experiment, production performance prediction model, and field application of multi-slug microbial enhanced oil recovery, Energy Fuels 28 (10) (2014) 6655-6665. [32] S. Leray, F. Douarche, R. Tabary, Y. Peysson, P. Moreau, C. Preux, Multi-objective assisted inversion of chemical EOR corefloods for improving the predictive capacity of numerical models, J. Petrol. Sci. Eng. 146 (2016) 1101-1115. [33] Y.Z. Wang, R.Y. Cao, Z.H. Jia, B.Y. Wang, M. Ma, L.S. Cheng, A multi-mechanism numerical simulation model for CO2-EOR and storage in fractured shale oil reservoirs, Petrol. Sci. 21 (3) (2024) 1814-1828. [34] R.Q. He, W.Z. Ma, X.Y. Ma, Y.C. Liu, Modeling and optimizing for operation of CO2-EOR project based on machine learning methods and greedy algorithm, Energy Rep. 7 (2021) 3664-3677. [35] G.F.C. Campos, S.M. Mastelini, G.J. Aguiar, R.G. Mantovani, L.F. de Melo, S. Barbon, Machine learning hyperparameter selection for contrast limited adaptive histogram equalization, EURASIP J. Image Video Process. 2019 (1) (2019) 59. [36] S. Chakraborty, S.H. Shaikh, A. Chakrabarti, R. Ghosh, An image denoising technique using quantum wavelet transform, Int. J. Theor. Phys. 59 (11) (2020) 3348-3371. [37] J.W. Dong, Y.M. Chen, B.Y. Yao, X. Zhang, N.F. Zeng, A neural network boosting regression model based on XGBoost, Appl. Soft Comput. 125 (2022) 109067. [38] T. Kausar, M.J. Wang, M. Idrees, Y. Lu, HWDCNN: Multi-class recognition in breast histopathology with Haar wavelet decomposed image based convolution neural network, Biocybern. Biomed. Eng. 39 (4) (2019) 967-982. [39] A. Kaushik, D. Joshi, R.K. Saw, K.B. Rathi, S. Mitra, A. Mandal, Formation and characterization of nanoparticle assisted surfactant stabilized oil-in-water nanoemulsions for application in enhanced oil recovery, Fuel 359 (2024) 130500. [40] S. Lim, S. Chi, Xgboost application on bridge management systems for proactive damage estimation, Adv. Eng. Inform. 41 (2019) 100922. [41] H.F. Lu, X. Ma, Hybrid decision tree-based machine learning models for short-term water quality prediction, Chemosphere 249 (2020) 126169. [42] J.L. Luo, Z.L. Zhang, Y. Fu, F. Rao, Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms, Results Phys. 27 (2021) 104462. [43] M.K. Mihcak, I. Kozintsev, K. Ramchandran, P. Moulin, Low-complexity image denoising based on statistical modeling of wavelet coefficients, IEEE Signal Process. Lett. 6 (12) (1999) 300-303. [44] M.S. Nasr, H.S. Nasr, M. Karimian, E. Esmaeilnezhad, Application of artificial intelligence to predict enhanced oil recovery using silica nanofluids, Nat. Resour. Res. 30 (3) (2021) 2529-2542. [45] S.I. Niwas, P. Palanisamy, K. Sujathan, E. Bengtsson, Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using complex Daubechies wavelets, Signal Process. 93 (10) (2013) 2828-2837. [46] X. Qiao, J.H. Bao, H. Zhang, L.H. Zeng, D.L. Li, Underwater image quality enhancement of sea cucumbers based on improved histogram equalization and wavelet transform, Inf. Process. Agric. 4 (3) (2017) 206-213. [47] B. Shen, S.L. Yang, X.Y. Gao, S. Li, S.S. Ren, H. Chen, A novel CO2-EOR potential evaluation method based on BO-LightGBM algorithms using hybrid feature mining, Geoenergy Sci. Eng. 222 (2023) 211427. [48] X.B. Song, L.W. Deng, H. Wang, Y.A. Zhang, Y.X. He, W.M. Cao, Deep learning-based time series forecasting, Artif. Intell. Rev. 58 (1) (2024) 23. [49] H.V. Thanh, D.S. Dashtgoli, H.M. Zhang, B. Min, Machine-learning-based prediction of oil recovery factor for experimental CO2-foam chemical EOR: Implications for carbon utilization projects, Energy 278 (2023) 127860. [50] J.W. Wu, Z.H. Chen, L.L. Liu, Y. Qu, L.N. Cai, X.L. Lou, J.X. Yun, Optimization of phenyllactic acid biosynthesis and separation by machine learning with neural network and overlay sampling uniform design, Biochem. Eng. J. 212 (2024) 109506. [51] J.W. Wu, Z.H. Chen, Z.W. Si, X.L. Lou, J.X. Yun, Radial basis function neural network and overlay sampling uniform design toward polylactic acid molecular weight prediction, Chin. J. Chem. Eng. 75 (2024) 214-221. [52] J.W. Wu, R.B. Wang, Y. Tan, L.L. Liu, Z.H. Chen, S.H. Zhang, X.L. Lou, J.X. Yun, Hybrid machine learning model based predictions for properties of poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose, J. Chromatogr. A 1727 (2024) 464996. [53] X.M. Zhang, C. Yan, C. Gao, B.A. Malin, Y. Chen, Predicting missing values in medical data via XGBoost regression, J. Healthc. Inform. Res. 4 (4) (2020) 383-394. [54] X. Zhu, J. Chu, K.D. Wang, S.F. Wu, W. Yan, K. Chiam, Prediction of rockhead using a hybrid N-XGBoost machine learning framework, J. Rock Mech. Geotech. Eng. 13 (6) (2021) 1231-1245. [55] J.X. Yun, C.M. Tu, D.Q. Lin, L.H. Xu, Y.T. Guo, S.C. Shen, S.H. Zhang, K.J. Yao, Y.X. Guan, S.J. Yao, Microchannel liquid-flow focusing and cryo-polymerization preparation of supermacroporous cryogel beads for bioseparation, J. Chromatogr. A 1247 (2012) 81-88. [56] J.X. Yun, J.T. Dafoe, E. Peterson, L.H. Xu, S.J. Yao, A.J. Daugulis, Rapid freezing cryo-polymerization and microchannel liquid-flow focusing for cryogel beads: Adsorbent preparation and characterization of supermacroporous bead-packed bed, J. Chromatogr. A 1284 (2013) 148-154. [57] K.J. Yao, J.X. Yun, S.C. Shen, L.H. Wang, X.J. He, X.M. Yu, Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography, J. Chromatogr. A 1109 (1) (2006) 103-110. [58] I. Nowrouzi, A.K. Manshad, A.H. Mohammadi, Evaluation of interfacial tension (IFT), oil swelling and oil production under imbibition of carbonated water in carbonate oil reservoirs, J. Mol. Liq. 312 (2020) 113455. [59] T.Q. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016, pp. 785-794. [60] M. Niazkar, A. Menapace, B. Brentan, R. Piraei, D. Jimenez, P. Dhawan, M. Righetti, Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018-May 2023), Environ. Model. Softw. 174 (2024) 105971. [61] Y.A. Uncu, T. Danisman, O. Hasan, Predicting (n, 3n) nuclear reaction cross-sections using XGBoost and leave-one-out cross-validation, Appl. Radiat. Isot. 219 (2025) 111714. [62] H. Xiao, W.C. Wang, H.C. Bao, F.S. Li, L. Zhou, Biodiesel-diesel blend optimized via leave-one cross-validation based on kinematic viscosity, calorific value, and flash point, Ind. Crops Prod. 191 (2023) 115914. [63] J.X. Yun, W.Y. lv, W. Zhang, Y.L. Gao, S.H. Zhang, S.C. Shen, A Method for increasing production and improving oil recoveryby bionanoemulsions, China Pat., CN201911143210.5 (2022). (in Chinese). [64] S. Aldousary, A.R. Kovscek, The diffusion of water through oil contributes to spontaneous emulsification during low salinity waterflooding, J. Petrol. Sci. Eng. 179 (2019) 606-614. [65] W. Song, A.R. Kovscek, Spontaneous clay Pickering emulsification, Colloids Surf. A Physicochem. Eng. Aspects 577 (2019) 158-166. [66] A.S. Hanamertani, S. Saraji, M. Piri, The effects of in situ emulsion formation and superficial velocity on foam performance in high-permeability porous media, Fuel 306 (2021) 121575. [67] L. Li, Y. Kang, Y. Hu, H.Z. Pan, Y. Huang, Q. Yuan, Capillary number effects on two-phase flow and residual oil morphology in water and supercritical CO2 displacement: A microfluidic study, Energy 316 (2025) 134503. [68] S.K. Nandwani, N.I. Malek, V.N. Lad, M. Chakraborty, S. Gupta, Study on interfacial properties of imidazolium ionic liquids as surfactant and their application in enhanced oil recovery, Colloids Surf. A Physicochem. Eng. Aspects 516 (2017) 383-393. [69] H.Y. Zhang, H.M. Ye, H.F. Liu, W.Y. Zhang, S. Wang, S.F. Zhao, W.D. Zhang, Y.G. Li, D. Ji, S.T. Li, S.B. Ni, Y.P. Huang, Z. Fang, W. He, Y.C. Li, K. Guo, Mechanism study and formula development by numerical simulation and visualization experiment in a microfluidic system for enhanced oil recovery, Chem. Eng. Sci. 299 (2024) 120430. [70] X. Zhang, Y.L. Su, L. Li, Q.A. Da, Y.M. Hao, W.D. Wang, J.H. Liu, X.G. Gao, A. Zhao, K.Y. Wang, Microscopic remaining oil initiation mechanism and formation damage of CO2 injection after waterflooding in deep reservoirs, Energy 248 (2022) 123649. |
| [1] | Ali Tarik Karagoz, Omar Alqusair, Chao Liu, Jie Li. Advances in conceptual process design: From conventional strategies to AI-assisted methods [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 60-76. |
| [2] | Dian Zhang, Bo Ouyang, Zheng-Hong Luo. Reaction process optimization based on interpretable machine learning and metaheuristic optimization algorithms [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 77-85. |
| [3] | Zhi Ma, Peng Cui, Xu Wang, Lanyu Li, Haoxiang Xu, Adrian Fisher, Daojian Cheng. The integration of artificial intelligence and high-throughput experiments: An innovative driving force in catalyst design [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 117-132. |
| [4] | Jianfeng Jiao, Xi Gao, Jie Li. Pure component property estimation framework using explainable machine learning methods [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 158-178. |
| [5] | Haijun Feng, Li Jiajia, Zhou Jian. Prediction of ionic liquid toxicity by interpretable machine learning [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 201-210. |
| [6] | Feifei Chen, Zhenyuan Xiao, Zhongfan Luo, Peng Jiang, Jingjing Chen, Yuanhui Ji, Jiahua Zhu, Xiaohua Lu, Liwen Mu. Prediction of mass transfer performance in gas-liquid stirred bioreactor using machine learning [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 211-226. |
| [7] | Yuan Tian, Honghua Zhang, Yueyang Qiao, Han Yang, Yanrong Liu, Xiaoyan Ji. Intelligent prediction of ionic liquids and deep eutectic solvents by machine learning [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 227-243. |
| [8] | Zifeng Li, Xiaoping Guan, Jingchang Zhang, Qiang Guo, Qiushi Xu, Ning Yang. Bayesian optimization of operational and geometric parameters of microchannels for targeted droplet generation [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 244-253. |
| [9] | Yongqi Pan, Yazi Yu, Lijie Wang, Guogang Hu, Yujun Wang, Guangsheng Luo. Intelligent chemical synthesis based on microchemical engineering technology [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 274-288. |
| [10] | Han Peng, Xinliang Jia, Xiaofang Guo, Yubo Jiang, Zhipeng Li, Zhengming Gao, J. J. Derksen. Removal of deposited metal particles on a horizontal surface by vertical submerged impinging jets [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 137-147. |
| [11] | Xinzhe Zhang, Aipeng Li, Xiaohan Huang, Qiang Fei. Recent advances in the biosynthesis of natural products from C1 compounds [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 277-285. |
| [12] | Zenan Tian, Zhiyu Zhang, Xiang Li, Xinxin Gao, Ziru Ren, Xiaobin Zhang. Evaluation of live Cryo-ECT system for liquid nitrogen-vapor nitrogen flow [J]. Chinese Journal of Chemical Engineering, 2025, 82(6): 246-255. |
| [13] | Zhe Ding, Li Guo, Fang Bai, Chao Hua, Ping Lu, Jinyi Chen. Toward the rational design for low-temperature hydrogenation of silicon tetrachloride: Mechanism and data-driven interpretable descriptor [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 172-184. |
| [14] | Mingqi Jiang, Zhuo Wang, Zhijian Sun, Jian Wang. A parallel chemical reaction optimization method based on preference-based multi-objective expected improvement [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 82-92. |
| [15] | Xiangkun Liu, Qihuan Qiu, Bingxu Chen, Yao Shi, Longqin Gu, Xinggui Zhou, Xuezhi Duan. CFD-ML integrated multi-objective optimization for n-butane partial oxidation reactor [J]. Chinese Journal of Chemical Engineering, 2025, 88(12): 53-64. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
