Chinese Journal of Chemical Engineering ›› 2025, Vol. 87 ›› Issue (11): 45-57.DOI: 10.1016/j.cjche.2025.06.003
Previous Articles Next Articles
Fu Rao1,2, Wenkang Deng2, Chenghao Liu2, Xiaofeng Xie2, Chunfa Liao1, Tao Qi2, Guoping Hu2
Received:2025-02-17
Revised:2025-06-03
Accepted:2025-06-04
Online:2025-06-16
Published:2025-11-28
Contact:
Xiaofeng Xie,E-mail:xfxie@gia.cas.cn;Guoping Hu,E-mail:gphu@gia.cas.cn
Supported by:Fu Rao1,2, Wenkang Deng2, Chenghao Liu2, Xiaofeng Xie2, Chunfa Liao1, Tao Qi2, Guoping Hu2
通讯作者:
Xiaofeng Xie,E-mail:xfxie@gia.cas.cn;Guoping Hu,E-mail:gphu@gia.cas.cn
基金资助:Fu Rao, Wenkang Deng, Chenghao Liu, Xiaofeng Xie, Chunfa Liao, Tao Qi, Guoping Hu. The template-free synthesis of zeolite NaY for CO2 capture[J]. Chinese Journal of Chemical Engineering, 2025, 87(11): 45-57.
Fu Rao, Wenkang Deng, Chenghao Liu, Xiaofeng Xie, Chunfa Liao, Tao Qi, Guoping Hu. The template-free synthesis of zeolite NaY for CO2 capture[J]. 中国化学工程学报, 2025, 87(11): 45-57.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.06.003
| [1] C.F. Wu, Q. Huang, Z.C. Xu, A.T. Sipra, N.B. Gao, L.P. de Souza Vandenberghe, S. Vieira, C.R. Soccol, R.K. Zhao, S. Deng, S.K.S. Boetcher, S.J. Lu, H.C. Shi, D.Y. Zhao, Y.P. Xing, Y.D. Chen, J.M. Zhu, D.D. Feng, Y. Zhang, L.H. Deng, G.P. Hu, P.A. Webley, D.X. Liang, Z.C. Ba, A. Mlonka-Medrala, A. Magdziarz, N. Miskolczi, S. Tomasek, S.S. Lam, S.Y. Foong, H.S. Ng, L. Jiang, X.L. Yan, Y.Z. Liu, Y. Ji, H.M. Sun, Y. Zhang, H.P. Yang, X. Zhang, M.Z. Sun, D.C.W. Tsang, J. Shang, C. Muller, M. Rekhtina, M. Krodel, A.H. Bork, F. Donat, L.N. Liu, X. Jin, W. Liu, S. Saqline, X.Y. Wu, Y.Q. Xu, A.L. Khan, Z. Ali, H.Q. Lin, L.Q. Hu, J. Huang, R. Singh, K.F. Wang, X.Z. He, Z.D. Dai, S.L. Yi, A. Konist, M.H.S. Baqain, Y.J. Zhao, S.Z. Sun, G.X. Chen, X. Tu, A. Weidenkaff, S. Kawi, K.H. Lim, C.F. Song, Q. Yang, Z.Y. Zhao, X. Gao, X. Jiang, H.Y. Ji, T.E. Akinola, A. Lawal, O.S. Otitoju, M.H. Wang, G.J. Zhang, L. Ma, B.C. Sempuga, X.Y. Liu, E. Oko, M. Daramola, Z.W. Yu, S.M. Chen, G.J. Kang, Q.F. Li, L. Gao, L. Liu, H. Zhou, A comprehensive review of carbon capture science and technologies, Carbon Capture Sci. Technol. 11 (2024) 100178. [2] D. D. Viet, D. T. Thao, K. D. Anh, T. Tsubota, Autohydrolysis treatment of bamboo and potassium oxalate (K2C2O4) activation of bamboo product for CO2 capture utilization, Front. Chem. Sci. Eng. 18 (2024) 41. [3] H.S. Baker, R.J. Millar, D.J. Karoly, U. Beyerle, B.P. Guillod, D. Mitchell, H. Shiogama, S. Sparrow, T. Woollings, M.R. Allen, Higher CO2 concentrations increase extreme event risk in a 1.5 ℃ world, Nat. Clim. Change 8 (7) (2018) 604-608. [4] Y. Zhang, P. Gentine, X.Z. Luo, X. Lian, Y.L. Liu, S. Zhou, A.M. Michalak, W. Sun, J.B. Fisher, S.L. Piao, T.F. Keenan, Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2, Nat. Commun. 13 (1) (2022) 4875. [5] R.L. Siegelman, E.J. Kim, J.R. Long, Porous materials for carbon dioxide separations, Nat. Mater. 20 (8) (2021) 1060-1072. [6] E. Perez-Botella, S. Valencia, F. Rey, Zeolites in adsorption processes: State of the art and future prospects, Chem. Rev. 122 (24) (2022) 17647-17695. [7] K. Malini, D. Selvakumar, N. Kumar, Activated carbon from biomass: Preparation, factors improving basicity and surface properties for enhanced CO2 capture capacity-A review, J. CO2 Util. 67 (2023) 102318. [8] Z.Q. Sun, Y.R. Liao, S.L. Zhao, X. Zhang, Q. Liu, X.Z. Shi, Research progress in metal-organic frameworks (MOFs) in CO2 capture from post-combustion coal-fired flue gas: Characteristics, preparation, modification and applications, J. Mater. Chem. A 10 (10) (2022) 5174-5211. [9] G. Singh, J. Lee, A. Karakoti, R. Bahadur, J.B. Yi, D.Y. Zhao, K. AlBahily, A. Vinu, Emerging trends in porous materials for CO2 capture and conversion, Chem. Soc. Rev. 49 (13) (2020) 4360-4404. [10] K.Z. Yang, G. Yang, J.Y. Wu, Quantitatively understanding the insights into CO2 adsorption on faujasite from the heterogeneity and occupancy sequence of adsorption sites, J. Phys. Chem. 125 (28) (2021) 15676-15686. [11] L. Feng, Y.H. Shen, T.B. Wu, B. Liu, D.H. Zhang, Z.L. Tang, Adsorption equilibrium isotherms and thermodynamic analysis of CH4, CO2, CO, N2 and H2 on NaY zeolite, Adsorption 26 (2020) 1101-1111. [12] D.G. Boer, J. Langerak, P.P. Pescarmona, Zeolites as selective adsorbents for CO2 separation, ACS Appl. Energy Mater. 6 (5) (2023) 2634-2656. [13] X.M. Zhao, R.G. Liu, H. Zhang, Y.S. Shang, Y. Song, C. Liu, T. Wang, Y.J. Gong, Z.H. Li, Structure evolution of aluminosilicate sol and its structure-directing effect on the synthesis of NaY zeolite, J. Appl. Crystallogr. 50 (1) (2017) 231-239. [14] S. Mintova, N.H. Olson, T. Bein, Electron microscopy reveals the nucleation mechanism of zeolite Y from precursor colloids, Angew. Chem. Int. Ed. 38 (21) (1999) 3201-3204. [15] H. Julide Koroglu, A. Sarioglan, M. Tatlier, A. Erdem-Senatalar, O. Tunc Savasci, Effects of low-temperature gel aging on the synthesis of zeolite Y at different alkalinities, J. Cryst. Growth 241 (4) (2002) 481-488. [16] Y.S. Zhao, Z.Q. Liu, W.L. Li, Y.S. Zhao, H.H. Pan, Y.D. Liu, M.G. Li, L.J. Kong, M.Y. He, Synthesis, characterization, and catalytic performance of high-silica Y zeolites with different crystallite size, Micropor. Mesopor. Mater. 167 (2013) 102-108. [17] B.A. Holmberg, H.T. Wang, J.M. Norbeck, Y.S. Yan, Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide, Micropor. Mesopor. Mater. 59 (1) (2003) 13-28. [18] B. Meng, S.Y. Ren, Z. Li, S.F. Nie, X.Y. Zhang, W.Y. Song, Q.X. Guo, B.J. Shen, A facile organic-free synthesis of high silica zeolite Y with small crystal in the presence of Co2+, Micropor. Mesopor. Mater. 323 (2021) 111248. [19] X.J. Meng, F.S. Xiao, Green routes for synthesis of zeolites, Chem. Rev. 114 (2) (2014) 1521-1543. [20] H. Awala, J.P. Gilson, R. Retoux, P. Boullay, J.-M. Goupil, V. Valtchev, S. Mintova, Template-free nanosized faujasite-type zeolites, Nat. Mater. 14 (4) (2015) 447-451. [21] M. Tavasoli, H. Kazemian, S. Sadjadi, M. Tamizifar, Synthesis and characterization of zeolite NaY using kaolin with different synthesis methods, Clays Clay Miner. 62 (6) (2014) 508-518. [22] P. Morales-Pacheco, J.M. Dominguez, L. Bucio, F. Alvarez, U. Sedran, M. Falco, Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene, Catal. Today 166 (1) (2011) 25-38. [23] International Zeolite Association Synthesis Commission, 2016. Verified Syntheses of Zeolitic Materials (3rd ed.). International Zeolite Association. Available at: https://www.izastructure.org/IZASC/verified_syntheses/Introduction_Verified_Syntheses_of_Zeolites-3rd-Edition-2016.pdf [Accessed 17 April. 2025]. [24] Y. Huang, K. Wang, D.H. Dong, D. Li, M.R. Hill, A.J. Hill, H.T. Wang, Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes, Micropor. Mesopor. Mater. 127 (3) (2010) 167-175. [25] T. Tang, L. Zhang, H. Dong, Z.X. Fang, W.Q. Fu, Q.Y. Yu, T.D. Tang, Organic template-free synthesis of zeolite Y nanoparticle assemblies and their application in the catalysis of the Ritter reaction, RSC Adv. 7 (13) (2017) 7711-7717. [26] A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod, Y. Al Wahedi, Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture, Micropor. Mesopor. Mater. 303 (2020) 110261. [27] A. Nakhaei Pour, A. Mohammadi, Effects of synthesis parameters on organic template-free preparation of zeolite Y, J. Inorg. Organomet. Polym. Mater. 31 (6) (2021) 2501-2510. [28] F. Rao, M.L. Liu, C.H. Liu, W.K. Deng, R.F. Huang, C.F. Liao, T. Qi, G.P. Hu, Synthesis of binder-free pelletized Y zeolite for CO2 capture, Carbon Capture Sci. Technol. 10 (2024) 100166. [29] L. Tosheva, V.P. Valtchev, Nanozeolites: synthesis, crystallization mechanism, and applications, Chem. Mater. 17 (10) (2005) 2494-2513. [30] C.H. Liu, F. Rao, Y.L. Guo, Z. Lu, W.K. Deng, G.B. Li, H. Zhang, T. Qi, G.P. Hu, CO2 capture using low silica X zeolite synthesized from low-grade coal gangue via a two-step activation method, J. Environ. Chem. Eng. 12 (2) (2024) 112074. [31] B. Ji, W.C. Zhang, Adsorption of cerium (III) by zeolites synthesized from kaolinite after rare earth elements (REEs) recovery, Chemosphere 303 (2022) 134941. [32] Q. Li, Y. Zhang, Z.J. Cao, W. Gao, L.S. Cui, Influence of synthesis parameters on the crystallinity and Si/Al ratio of NaY zeolite synthesized from kaolin, Petrol. Sci. 7 (3) (2010) 403-409. [33] W. Lutz, Zeolite Y: Synthesis, modification, and properties: A case revisited, Adv. Mater. Sci Eng. 2014 (1) (2014) 724248. [34] J.A. Moreno-Torres, F. Espejel-Ayala, R. Ramirez-Bon, E. Coutino-Gonzalez, Sustainable strategies to synthesize small-pore NaP zeolites using natural minerals, J. Mater. Sci. 59 (2) (2024) 423-434. [35] N.J. Bu, X.M. Liu, S.L. Song, J.H. Liu, Q. Yang, R. Li, F. Zheng, L.H. Yan, Q. Zhen, J.F. Zhang, Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution, Adv. Powder Technol. 31 (7) (2020) 2699-2710. [36] N.N. Wang, Y. Wang, H.F. Cheng, Z. Tao, J. Wang, W.Z. Wu, Impact of cationic lanthanum species on zeolite Y: an infrared, excess infrared and Raman spectroscopic study, RSC Adv. 3 (43) (2013) 20237-20245. [37] M. Krol, W. Mozgawa, W. Jastrzebski, K. Barczyk, Application of IR spectra in the studies of zeolites from D4R and D6R structural groups, Micropor. Mesopor. Mater. 156 (2012) 181-188. [38] Z.X. Rao, Y. Chen, K.H. Qiu, J.F. Li, Y. Jiao, C.X. Hu, P.C. Zhang, Y. Huang, Facile synthesis of NaY molecular sieve by low-temperature ultrasonic gelling method for efficient adsorption of rare-earth elements, Mater. Chem. Phys. 293 (2023) 126906. [39] B. Petrovic, M. Gorbounov, S. Masoudi. Soltani, Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods, Micropor. Mesopor. Mater. 312 (2021) 110751. [40] N. Hedin, L.J. Chen, A. Laaksonen, Sorbents for CO2 capture from flue gas-aspects from materials and theoretical chemistry, Nanoscale 2(10) (2010) 1819-1841. [41] W. Shao, L.Z. Zhang, L.X. Li, R.L. Lee, Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures, Adsorption 15 (5) (2009) 497-505. [42] P. Guo, J. Shin, A.G. Greenaway, J.G. Min, J. Su, H.J. Choi, L.F. Liu, P.A. Cox, S.B. Hong, P.A. Wright, X.D. Zou, A zeolite family with expanding structural complexity and embedded isoreticular structures, Nature 524 (7563) (2015) 74-78. [43] Y. Zhou, J.L. Zhang, L. Wang, X.L. Cui, X.L. Liu, S.S. Wong, H. An, N. Yan, J.Y. Xie, C. Yu, P.X. Zhang, Y.H. Du, S.B. Xi, L.R. Zheng, X.Z. Cao, Y.J. Wu, Y.X. Wang, C.Q. Wang, H.M. Wen, L. Chen, H.B. Xing, J. Wang, Self-assembled iron-containing mordenite monolith for carbon dioxide sieving, Science 373 (6552) (2021) 315-320. [44] M. Kralik, Adsorption, chemisorption, and catalysis, Chem. Pap. 68 (12) (2014) 1625-1638. [45] Y.A.B. Neolaka, S.D. Baunsele, F.O. Nitbani, P. de Rozari, B.A. Widyaningrum, Y. Lawa, A.N. Amenaghawon, H. Darmokoesoemo, H.S. Kusuma, Preparation of cellulose adsorbent based on banana peel waste (Musa paradisiaca): Green activation and adsorption of Rhodamine B from the aquatic environment, Nano Struct. Nano Objects 38 (2024) 101146. [46] E. Aly, L.F.A.S. Zafanelli, A. Henrique, K. Gleichmann, A.E. Rodrigues, F.A.Da.Silva. Freitas, J.A.C. Silva, Separation of CO2/N2 in Ion-Exchange binder-free beads of zeolite NaY for Post-Combustion CO2 capture, Sep. Purif. Technol. 348 (2024) 127722. [47] R.V. Siriwardane, M.S. Shen, E.P. Fisher, Adsorption of CO2, N2, and O2 on natural zeolites, Energy Fuels 17 (3) (2003) 571-576. |
| [1] | Dongdong Chen, Pei Xue, Dongyang Liu, Yuhao Zhang, Liang Zhao, Jinsen Gao. Mechanisms of competitive adsorption and diffusion of ethyl sulfide and n-butyl mercaptan with cyclohexene in FAU: MC and MD [J]. Chinese Journal of Chemical Engineering, 2025, 85(9): 280-293. |
| [2] | Yasin Albarqouni, Nurul Huda Abu Bakar, Mohammad R. Thalji, Arman Abdullah. Self-polymerization of dopamine on zinc oxide nanoparticles for enhanced corrosion resistance in epoxy-aluminum coatings [J]. Chinese Journal of Chemical Engineering, 2025, 85(9): 304-315. |
| [3] | Chong Lu, Xingwei Han, Haojun Zou, Xue Gao, Sijia Wang. Adsorption of ciprofloxacin on (Zn-Al) LDHs modified 3D reduced graphene oxide: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 125-136. |
| [4] | Fan Zhang, Miaomiao Zhao, Xiaoyu Jia, Chen Li, Degang Ma. Adsorption, separation and recovery performance of spherical PR/ CMC/AC composites for cadmium-contaminated soil remediation [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 199-207. |
| [5] | Xiaoqian Peng, Shaojun Liu, Jing Zhang, Xu Zhang, Xiaochan Liu, Zhipeng Yuan, Guoran Liu, Xibin Yi, Serguei Filatov. Nitrogen-doped composite aerogels from ZIF-8 derived porous carbon and chitosan for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2025, 82(6): 95-104. |
| [6] | Biao Yuan, Fujin Sun, Pingting Chen, Kunpeng He, Pan Wu, Changjun Liu, Jian He, Wei Jiang. Adsorption process for purifying vanadium from chromium-contaminated leaching solutions using zirconium-based adsorbents [J]. Chinese Journal of Chemical Engineering, 2025, 82(6): 125-137. |
| [7] | Jingru Dou, Yingxuan Wen, Fangfang Zhang, Falong Shan, Shougui Wang, Jipeng Dong, Fei Gao, Guanghui Chen. Construction of hydrophobic CuCl@AC–PTFE composites with an enhanced Cu(I) stability for efficient CO adsorption [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 23-31. |
| [8] | Shuaishuai Zhang, Qingwen Luo, Xinan Sun, Lin Chi, Peng Sun, Lianke Zhang. Facile synthesis copper-modified titania (Cu/TiO2) nanoparticles for high-efficiency Congo red adsorption [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 87-94. |
| [9] | Kaoutar Hjouji, Ibrahim Atemni, Rajesh Haldhar, Moussa Ouakki, Tarik Ainane, Mustapha Taleb, Seong-Cheol Kim, Zakia Rais. Green corrosion inhibition of mild steel in acidic media using Datura stramonium seed extract: A study for sustainable engineering applications [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 281-302. |
| [10] | Baifeng Yang, Qingrong Zheng, Shenhua Yang. Analysis of discharging characteristics of the storage system by adsorption for boil off gas (BOG) from onboard LNG [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 62-71. |
| [11] | Hu Wang, Qingrong Zheng. Structural modification and heat transfer enhancement on HKUST-1 for adsorbed natural gas [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 109-119. |
| [12] | Changqing Su, Wentao Jiang, Yang Guo, Guodong Yi, Zengxing Li, Huan Li. Rational molecular design of P-doped porous carbon material for the VOCs adsorption [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 155-163. |
| [13] | Zhiwei Zhao, Yating Wang, Yuhao Tang, Xiaoqing Wang, Feifei Zhang, Jiangfeng Yang. Copper-based metal–organic framework with two methane traps for efficient CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 234-240. |
| [14] | Lingbing Bu, Li Guo, Yingqi Luo, Wenhua Yin, Yi Wu, Hongyu Zhang. Oxygen distribution in bed and safety analysis during hydrogen purification process from oxygen-containing feed gas [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 24-32. |
| [15] | Feng Gao, Sixiao Zhu, Liping Chang, Weiren Bao, Jinghong Ma, Junjie Liao. Kinetics of hydrogen sulfide removal from coke oven gas over faujasite zeolite: Experimental and modeling studies [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 232-244. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
