[1] J.B. Joshi, Computational flow modelling and design of bubble column reactors, Chem. Eng. Sci. 56 (21-22) (2001) 5893-5933. [2] N. Jourdan, M. Kanniche, T. Neveux, O. Potier, Experimental characterization of liquid flows in cooling tower packing, Ind. Eng. Chem. Res. 61 (7) (2022) 2926-2936. [3] J.G. Kunesh, L. Lahm, T. Yanagi, Commercial scale experiments that provide insight on packed tower distributors, Ind. Eng. Chem. Res. 26 (9) (1987) 1845-1850. [4] L.J. Forney, W.R. Penney, H.X. Vo, Scale-up in plug-flow reactors: Laminar feed, AIChE J. 47 (1) (2001) 31-38. [5] N.K. Fominyh, A.S. Pugachuk, Y.A. Borisov, Y.A. Gavrilova, Increasing flow uniformity degree in the flow part of the heat exchanger, in: Oil and Gas Engineering (Oge-2022), AIP Publishing, Omsk, Russia, 2023. [6] J.A. Biesenberger, S. Lee, A fundamental study of polymer melt devolatilization, Polym. Eng. Sci. 26 (14) (1986) 982-988. [7] K.S. Chauhan, H. Tyagi, Thermal modeling of fluid flow and heat transfer in direct contact membrane distillation, Energy Convers. Manag. 291 (2023) 117249. [8] D.Y. Liu, Z. Wang, Y.Y. Cai, J. Chen, J. Jin, B.T. Zhao, Computational fluid dynamics based modeling of gas absorption process: A state-of-the-art review, Ind. Eng. Chem. Res. 63 (18) (2024) 7959-8002. [9] B. Tan, Z. Xu, Y. Wang, Y. Zhang, Y. Hu, T. Qi, Modeling the axial distribution of mass transfer coefficient in an agitated-pulsed extraction column, AIChE J. 68 (6) (2022) e17659 . [10] J.X. Chen, Q.M. Pan, J.Z. Sun, P.Y. Gu, Study on liquid distribution device of strip devolatilization equipment, China Synth. Rubber Ind. 17 (2) (1994) 73-76 (in Chinese). [11] H. Liu, P.W. Li, J.V. Lew, CFD study on flow distribution uniformity in fuel distributors having multiple structural bifurcations of flow channels, Int. J. Hydrog. Energy 35 (17) (2010) 9186-9198. [12] R.W. Guo, T.T. Fu, C.Y. Zhu, Y.G. Ma, Flow distribution and mass transfer of gas-liquid flow in parallel microchannels with different tree-shaped distributors: halving-width versus constant-width, Ind. Eng. Chem. Res. 59 (3) (2020) 1327-1335. [13] H. Liu, P.W. Li, Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels, Int. J. Heat Fluid Flow 40 (2013) 165-179. [14] J.W. VanGilder, R.R. Schmidt, Airflow uniformity through perforated tiles in a raised-floor data center, Proceedings of IPACK2005, Paper No: IPACK2005-73375, ASME InterPACK0 05, San Francisco, California, USA, 2005. [15] V. Weitbrecht, D. Lehmann, A. Richter, Flow distribution in solar collectors with laminar flow conditions, Sol. Energy 73 (6) (2002) 433-441. [16] W.X. Bi, J.Y. Li, Z.J. Lin, Flow uniformity optimization for large size planar solid oxide fuel cells with U-type parallel channel designs, J. Power Sources 195 (10) (2010) 3207-3214. [17] H. Liu, P.W. Li, J. Van Lew, D. Juarez-Robles, Experimental study of the flow distribution uniformity in flow distributors having novel flow channel bifurcation structures, Exp. Therm. Fluid Sci. 37 (2012) 142-153. [18] L.L. Yang, K. Zhang, Y.Y. Chen, M.A. Aslam, F.M. Jing, Flow separation characteristics of non-Newtonian oil and polymer solution fluids in T-junctions of offshore production platforms, Phys. Fluids 37 (1) (2025) 013303. [19] E.J. Windhab, P. Saramito, N. Germann, K. Feigl, F.X. Tanner, T.E. Simos, G. Psihoyios, C. Tsitouras, Modeling and simulation in food processing and non-Newtonian fluid flows, Proceedings of the International Conference of Numerical Analysis and Applied Mathematics 2010, Rhodes, Greece, 2010. [20] P. Mishra, F. Ein-Mozaffari, Intensification of suspension of solid particles in non-Newtonian fluids with coaxial mixers, Chem. Eng. Process. Process. Intensif. 168 (2021) 108553. [21] H.G. Sun, Y.H. Jiang, Y. Zhang, L.J. Jiang, A review of constitutive models for non-Newtonian fluids, Fract. Calc. Appl. Anal. 27 (4) (2024) 1483-1526. [22] C. Carpenter, Hydraulic fracturing operations, J. Petrol. Technol. 73 (6) (2021) 55. [23] G. Khodakov, E. Gorlov, G. Golovin, Production and pipeline transportation of coal-water slurry fuel, Solid Fuel Chem. 40 (4) (2006) 19-35. [24] V. Kumbar, S. Nedomova, S. Ondrusi-kova, A. Polcar, Rheological behaviour of chocolate at different temperatures, Potr. S. J. F. Sci. 12 (1) (2018) 123-128. [25] S.M. Zhang, C.Z. Meng, Y.H. Wu, C. Zeng, P. Ji, H.P. Wang, C.S. Wang, Efficient production of copolymerized PA6-based polymer fibers: Oligomer control and direct melt spinning, Polymer 296 (2024) 126762. [26] V. Speranza, F. De Santis, R. Pantani, Effect of isothermal shear flow on morphology evolution of an isotactic polypropylene, Polymer 295 (2024) 126752. [27] Z.M. Chen, P. Zhang, Z.C. Tang, X.Q. Fan, Y. Yang, B.B. Jiang, Z.L. Huang, J.D. Wang, Y.R. Yang, Controlling law of flow and mixing behavior in an autoclave for the production of low-density polyethylene, Ind. Eng. Chem. Res. (2024) acs.iecr.4c02186. [28] F.R. Dintzis, E.B. Bagley, Shear-thickening and transient flow effects in starch solutions, J. Appl. Polym. Sci. 56 (5) (1995) 637-640. [29] H.A. Ardakani, E. Mitsoulis, S.G. Hatzikiriakos, Thixotropic flow of toothpaste through extrusion dies, J. Non Newton. Fluid Mech. 166 (21-22) (2011) 1262-1271. [30] P. Csizmadia, C. Hős, CFD-based estimation and experiments on the loss coefficient for Bingham and power-law fluids through diffusers and elbows, Comput. Fluids 99 (2014) 116-123. [31] F. Crespo, R. Ahmed, M. Enfis, A. Saasen, M. Amani, Surge-and-swab pressure predictions for yield-power-law drilling fluids, SPE Drill. Complet. 27 (4) (2012) 574-585. [32] Z.K. Liu, C.L. Liu, W. Zhang, Y. Wang, J. Cao, Modeling fluctuating pressure in the eccentric annulus with a four-parameter rheological method, Energy Rep. 8 (2022) 1405-1417. [33] S.C. Joshi, Y.C. Lam, F.Y.C. Boey, A.I.Y. Tok, Power law fluids and Bingham plastics flow models for ceramic tape casting, J. Mater. Process. Technol. 120 (1-3) (2002) 215-225. [34] G.R. Barrenechea, E. Suli, Analysis of a stabilised finite element method for power-law fluids, Constr. Approx. 57 (2) (2023) 295-325. [35] G.A. Patino-Jaramillo, I. Iglesias, M. Vera, Laminar flow and pressure loss in planar Tee joints: Pressure loss coefficients, Eur. J. Mech. B 94 (2022) 263-275. |