[1] R. Natarajan, A. Acrivos, The instability of the steady flow past spheres and disks, J. Fluid Mech. 254 (1993) 323-344. [2] A.G. Tomboulides, S.A. Orszag, Numerical investigation of transitional and weak turbulent flow past a sphere, J. Fluid Mech. 416 (2000) 45-73. [3] M. Chrust, S. Goujon-Durand, J.E. Wesfreid, Loss of a fixed plane of symmetry in the wake of a sphere, J. Fluids Struct. 41 (2013) 51-56. [4] G. Segre, A. Silberberg, Radial particle displacements in poiseuille flow of suspensions, Nature 189 (4760) (1961) 209-210. [5] J.P. Matas, J.F. Morris, E. Guazzelli, Inertial migration of rigid spherical particles in Poiseuille flow, J. Fluid Mech. 515 (2004) 171-195. [6] Z.S. Yu, N. Phan-Thien, R.I. Tanner, Dynamic simulation of sphere motion in a vertical tube, J. Fluid Mech. 518 (2004) 61-93. [7] F. Alouges, A. Lefebvre-Lepot, A. Sellier, Motion of a solid particle in a bounded viscous flow using the Sparse Cardinal Sine Decomposition, Meccanica 55 (2) (2020) 403-419. [8] Z.G. Feng, J. Gatewood, E.E. Michaelides, Wall effects on the flow dynamics of a rigid sphere in motion, J. Fluids Eng. 143 (8) (2021) 081106. [9] R.H. Magarvey, R.L. Bishop, Transition ranges for three-dimensional wakes, Can. J. Phys. 39 (10) (1961) 1418-1422. [10] D.M. Nie, J.W. Wang, S.W. Li, J.Z. Lin, Freely rising or falling of a sphere in a square tube at intermediate Reynolds numbers, J. Fluid Mech. 1000 (2024) A82. [11] H. Brenner, Dynamics of a particle in a viscous fluid, Chem. Eng. Sci. 17 (6) (1962) 435-446. [12] H. Brenner, J. Happel, Slow viscous flow past a sphere in a cylindrical tube, J. Fluid Mech. 4 (2) (1958) 195-213. [13] I. Pliskin, H. Brenner, Experiments on the pressure drop created by a sphere settling in a viscous liquid, J. Fluid Mech. 17 (1) (1963) 89-96. [14] G.A. Feldman, H. Brenner, Experiments on the pressure drop created by a sphere settling in a viscous liquid. Part 2. Reynolds numbers from 0.2 to 21,000, J. Fluid Mech. 32 (4) (1968) 705-720. [15] P.M. Bungay, H. Brenner, The motion of a closely-fitting sphere in a fluid-filled tube, Int. J. Multiph. Flow 1 (1) (1973) 25-56. [16] P.L. Paine, P. Scherr, Drag coefficients for the movement of rigid spheres through liquid-filled cylindrical pores, Biophys. J. 15 (10) (1975) 1087-1091. [17] N. Al Quddus, W.A. Moussa, S. Bhattacharjee, Motion of a spherical particle in a cylindrical channel using arbitrary Lagrangian-Eulerian method, J. Colloid Interface Sci. 317 (2) (2008) 620-630. [18] J. Happel, E. Bart, The settling of a sphere along the axis of a long square duct at low Reynolds' number, Appl. Sci. Res. 29 (1) (1974) 241-258. [19] D.L. Tullock, N. Phan-Thien, A.L. Graham, Boundary element simulations of spheres settling in circular, square and triangular conduits, Rheol. Acta 31 (2) (1992) 139-150. [20] H. Faxen, Der Widerstand Gegen die Bewegung einer starren Kugel in einer zahen Flussigkeit, die zwischen zwei parallelen ebenen Wanden eingeschlossen ist, Ann. Der Phys. 373 (10) (1922) 89-119. [21] I. Machac, Z. Lecjaks, Wall effect for a sphere falling through a non-Newtonian fluid in a rectangular duct, Chem. Eng. Sci. 50 (1) (1995) 143-148. [22] Z.G. Feng, E.E. Michaelides, Hydrodynamic force on spheres in cylindrical and prismatic enclosures, Int. J. Multiph. Flow 28 (3) (2002) 479-496. [23] R.G.M. van der Sman, Drag force on spheres confined on the center line of rectangular microchannels, J. Colloid Interface Sci. 351 (1) (2010) 43-49. [24] Z.P. Zhu, X.Z. Song, G.S. Li, Z.M. Xu, S.L. Jing, X.Z. Qin, S.M. Duan, Predicting wall drag coefficient and settling velocity of particle in parallel plates filled with Newtonian fluids, Particuology 58 (2021) 242-250. [25] R.P. Chhabra, C. Tiu, P.H.T. Uhlherr, A study of wall effects on the motion of a sphere in viscoelastic fluids, Can. J. Chem. Eng. 59 (6) (1981) 771-775. [26] N. Phan-Thien, X.J. Fan, Pressure drop created by a sphere settling in a tube containing a fiber suspension, J. Rheol. 43 (1) (1999) 1-8. [27] X.Z. Song, Z.P. Zhu, Z.M. Xu, G.S. Li, M.A. Faustino, C.C. Chen, T.W. Jiang, X. Xie, Experimental study on the wall factor for spherical particles settling in parallel plates filled with power-law fluids, J. Petrol. Sci. Eng. 179 (2019) 941-947. [28] P. Wang, Z.S. Yu, J.Z. Lin, Numerical simulations of particle migration in rectangular channel flow of Giesekus viscoelastic fluids, J. Non Newton. Fluid Mech. 262 (2018) 142-148. [29] H.H. Sherief, M.S. Faltas, S. El-Sapa, A general formula for the drag on a solid of revolution body at low Reynolds numbers in a microstretch fluid, Meccanica 52 (11) (2017) 2655-2664. [30] A. Al-Hanaya, S. El-Sapa, An analysis of slippage effects on a solid sphere enclosed by a non-concentric cavity filled with a couple stress fluids, Sci. Rep. 13 (1) (2023) 19595. [31] Z.S. Yu, X.M. Shao, A direct-forcing fictitious domain method for particulate flows, J. Comput. Phys. 227 (1) (2007) 292-314. [32] Z.S. Yu, N. Phan-Thien, Y.R. Fan, R.I. Tanner, Viscoelastic mobility problem of a system of particles, J. Non Newton. Fluid Mech. 104 (2-3) (2002) 87-124. [33] Z.S. Yu, A. Wachs, Y. Peysson, Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method, J. Non Newton. Fluid Mech. 136 (2-3) (2006) 126-139. [34] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow 25 (5) (1999) 755-794. [35] Z.S. Yu, A. Wachs, A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids, J. Non Newton. Fluid Mech. 145 (2-3) (2007) 78-91. [36] Z.S. Yu, N. Phan-Thien, R.I. Tanner, Rotation of a spheroid in a Couette flow at moderate Reynolds numbers, Phys. Rev. E 76 (2 Pt 2) (2007) 026310. [37] F.M. White, Viscous Fluid Flow, McGraw-Hill, New York, USA, 1974. [38] N. Liron, S. Mochon, Stokes flow for a stokeslet between two parallel flat plates, J. Eng. Math. 10 (4) (1976) 287-303. [39] B.P. Ho, L.G. Leal, Inertial migration of rigid spheres in two-dimensional unidirectional flows, J. Fluid Mech. 65 (2) (1974) 365-400. [40] M.E. Staben, A.Z. Zinchenko, R.H. Davis, Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow, Phys. Fluids 15 (6) (2003) 1711-1733. |