[1] X.Z. Wu, H.Y. Ye, Y.J. Jiang, D.Y. Li, G. Wang, Development of a novel self-entry exploitation device for marine natural gas hydrate and the feasibility studies, Ocean. Eng. 254 (2022) 111365. [2] Y.M. Kuang, L. Yang, Q.P. Li, X. Lv, Y.P. Li, B. Yu, S.D. Leng, Y.C. Song, J.F. Zhao, Physical characteristic analysis of unconsolidated sediments containing gas hydrate recovered from the Shenhu Area of the South China sea, J. Petrol. Sci. Eng. 181 (2019) 106173. [3] Q.B. Hu, Y.L. Li, N.Y. Wu, J.X. Sun, Q. Chen, X.F. Sun, Study on creep behaviors and nonlinear creep constitutive model for sandy marine hydrate-bearing sediments, Ocean. Eng. 286 (2023) 115717. [4] Q.C. Li, C. Zhang, Y.D. Yang, U. Ansari, Y. Han, X.Z. Li, Y.F. Cheng, Preliminary experimental investigation on long-term fracture conductivity for evaluating the feasibility and efficiency of fracturing operation in offshore hydrate-bearing sediments, Ocean. Eng. 281 (2023) 114949. [5] Y. Feng, A.X. Qu, Y.Z. Han, C.R. Shi, Y.Z. Liu, L.X. Zhang, J.F. Zhao, L. Yang, Y.C. Song, Effect of gas hydrate formation and dissociation on porous media structure with clay particles, Appl. Energy 349 (2023) 121694. [6] J.L. Ye, X.W. Qin, H.J. Qiu, W.W. Xie, H.F. Lu, C. Lu, J.H. Zhou, J.Y. Liu, T.B. Yang, J. Cao, R.N. Sa, Data report: Molecular and isotopic compositions of the extracted gas from China’s first offshore natural gas hydrate production test in South China Sea, Energies 11 (10) (2018) 2793. [7] K. Yamamoto, Overview and introduction: Pressure core-sampling and analyses in the 2012-2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough, Mar. Petrol. Geol. 66 (2015) 296-309. [8] T.S. Collett, Resource potential of gas hydrates: Recent contributions from international research and development projects, Geol. Soc. Lond. Petrol. Geol. Conf. Ser. 7 (1) (2010) 1151-1154. [9] C. Dubreuil-Boisclair, E. Gloaguen, G. Bellefleur, D. Marcotte, Non-Gaussian gas hydrate grade simulation at the Mallik site, Mackenzie Delta, Canada, Mar. Petrol. Geol. 35 (1) (2012) 20-27. [10] T.S. Collett, M.W. Lee, W.F. Agena, J.J. Miller, K.A. Lewis, M.V. Zyrianova, R. Boswell, T.L. Inks, Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope, Mar. Petrol. Geol. 28 (2) (2011) 279-294. [11] Z.Q. Qu, J.C. Fan, T.K. Guo, X.Q. Liu, J. Hou, M.J. Wang, Development and evaluation of large-size phase change proppants for fracturing of marine natural gas hydrate reservoirs, Energies 15 (21) (2022) 8018. [12] X.X. Wang, G.C. Jiang, G.S. Wang, L.L. Yang, Y.B. He, T.F. Dong, X.Y. Chang, H.Z. Chen, Application of a biomimetic wellbore stabilizer with strong adhesion performance for hydrate reservoir exploitation, Fuel 337 (2023) 127184. [13] W.J. Lan, H.X. Wang, Y.Q. Li, K. Feng, X. Zhang, Y.X. Liu, X.Y. Zhu, S.S. Chen, Numerical and experimental investigation on a downhole gas-liquid separator for natural gas hydrate exploitation, J. Petrol. Sci. Eng. 208 (2022) 109743. [14] X. Fang, G.R. Wang, L. Zhong, D.F. Wang, S.Z. Qiu, X.S. Li, Analysis of weakly cemented gas hydrate bearing sediments particles movement and de-cementation behavior in hydrocyclone separator, Powder Technol. 424 (2023) 118174. [15] X. Fang, G.R. Wang, L. Zhong, S.Z. Qiu, D.F. Wang, A CFD-DEM analysis of the de-cementation behavior of weakly cemented gas hydrate-bearing sediments in a hydrocyclone separator, Part. Sci. Technol. 40 (7) (2022) 812-823. [16] Y. Tang, Z.L. Li, G.R. Wang, Y.F. He, A novel approach for nature gas hydrate separation: Downhole spiral-cyclone coupled hydraulic in situ separation, Chem. Eng. Res. Des. 188 (2022) 808-822. [17] D.A. Terry, C.C. Knapp, A unified effective medium model for gas hydrates in sediments, Geophysics 83 (6) (2018) MR317-MR332. [18] H.J. Pan, H.B. Li, D. Grana, Y. Zhang, T.Y. Liu, C. Geng, Quantitative characterization of gas hydrate bearing sediment using elastic-electrical rock physics models, Mar. Petrol. Geol. 105 (2019) 273-283. [19] J.J. Ren, Z.Y. Yin, Q.P. Li, F. Wu, D.Y. Chen, S.X. Li, Pore-scale investigation of CH4 hydrate kinetics in clayey-silty sediments by low-field NMR, Energy Fuels 36 (24) (2022) 14874-14887. [20] H.J. Pan, H.B. Li, J.Y. Chen, M. Riedel, M. Holland, Y. Zhang, S.J. Cai, Quantification of gas hydrate saturation and morphology based on a generalized effective medium model, Mar. Petrol. Geol. 113 (2020) 104166. [21] Z.H. Han, L.Q. Zhang, J. Zhou, Z.J. Pan, S. Wang, R.R. Li, Effects of hydrate occurring mechanisms and saturation on the mechanical properties of hydrate-bearing sediments: Numerical study based on simplified DEM simulation, J. Nat. Gas Sci. Eng. 108 (2022) 104804. [22] J.J. Ren, Z.Y. Yin, H.F. Lu, C.L. Xu, Z.G. Kuang, W. Deng, Y.T. Liu, P. Linga, Effects of South China Sea clayey-silty sediments on the kinetics and morphology of CH4 hydrate: Implication on energy recovery, Appl. Energy 367 (2024) 123399. [23] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1) (1979) 47-65. [24] R. Jain, S. Tschisgale, J. Frohlich, A collision model for DNS with ellipsoidal particles in viscous fluid, Int. J. Multiph. Flow 120 (2019) 103087. [25] Y.Q. Mao, W.H. Pu, H. Zhang, Q.Y. Zhang, Z.Y. Song, K.Q. Chen, D. Han, Orthogonal experimental design of an axial flow cyclone separator, Chem. Eng. Process. Process. Intensif. 144 (2019) 107645. [26] J.A. Delgadillo Gomez, Modelling of 75- and 250-mm hydrocyclones and exploration of novel designs using computational fluid dynamics, Ph.D. Thesis, The University of Utah, USA, 2006. |