[1] L. Gao, J.H. Li, D.H. Wang, X.Y. Xiong, C.W. Yi, M.Z. Han, Outline of metallogenic regularity of bauxite deposits in China, Acta Geol. Sin. Engl. Ed. 89 (6) (2015) 2072-2084. [2] Z.W. Liu, H.W. Yan, W.H. Ma, K.Q. Xie, B.Q. Xu, L.C. Zheng, Digestion behavior and removal of sulfur in high-sulfur bauxite during bayer process, Miner. Eng. 149 (2020) 106237. [3] G. Cheng, J.Q. Zhang, H.H. Su, Z.Y. Zhang, Synthesis and characterization of a novel collector for the desulfurization of fine high-sulfur bauxite via reverse flotation, Particuology 79 (2023) 64-77. [4] Y.L. Li, G. Cheng, M.N. Zhang, Y.J. Cao, E. Von Lau, Advances in depressants used for pyrite flotation separation from coal/minerals, Int. J. Coal Sci. Technol. 9 (1) (2022) 54. [5] S. Yuan, H.X. Xiao, T.Y. Yu, Y.J. Li, P. Gao, Enhanced removal of iron minerals from high-iron bauxite with advanced roasting technology for enrichment of aluminum, Powder Technol. 372 (2020) 1-7. [6] G. Cheng, Y.L. Li, M.N. Zhang, Research progress on desulfurization technology of high-sulfur bauxite, Trans. Nonferrous Met. Soc. China 32 (10) (2022) 3374-3387. [7] Z.W. Liu, H.W. Yan, W.H. Ma, P. Xiong, Sulfur removal of high-sulfur bauxite, Min. Metall. Explor. 37 (5) (2020) 1617-1626. [8] Q. Huo, R.Y. Li, C.Q. Chen, C.Q. Wang, T.F. Long, X. Liu, Study on potential microbial community to the waste water treatment from bauxite desilication process, Environ. Sci. Pollut. Res. 30 (6) (2023) 15438-15453. [9] D. Lu, G.Z. Lyu, T.A. Zhang, W.G. Zhang, D. Xie, Y.X. Wang, L. Wang, Roasting pretreatment-low temperature digestion method for comprehensive utilization of high-sulfur bauxite, Light Metals 2018. Springer International Publishing, Cham, 2018, pp. 3-8. [10] C. Tan, C.Y. Chen, J.Q. Li, S.H. Zhang, H.F. Wu, The desulfurization and digestion property of high-sulfur bauxite with coarse-grained particles by roasting: Desulfurization ratio and digestion kinetics, Trans. Indian Inst. Met. 75 (7) (2022) 1821-1830. [11] S.W. Jiu, B. Zhao, Y.X. Chen, High-efficiency desulfurization of high-sulfur bauxite calcined in a conveyor bed: Kinetics, process, and application, Processes 10 (8) (2022) 1586. [12] H.F. Wu, C.Y. Chen, J.Q. Li, Y.P. Lan, L.Z. Wang, B.L. Quan, H.X. Jin, Digestion mechanism and crystal simulation of roasted low-grade high-sulfur bauxite, Trans. Nonferrous Met. Soc. China 30 (6) (2020) 1662-1673. [13] R.F. Wang, S. Yuan, P. Gao, Y.J. Li, Application of suspension magnetization roasting as technology for high-efficiency separation of valuable iron minerals from high-iron bauxite, Trans. Nonferrous Met. Soc. China 32 (7) (2022) 2391-2402. [14] J. Hammerschmidt, J. Guntner, B. Kerstiens, Roasting of gold ore in the circulating fluidized-bed technology, Dev. Miner. Process, 15 (2005) 433-453. [15] M. Siedlecki, W.D. Jong, A.H.M. Verkooijen, Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels-A Review, Energies (2011) 389-434. [16] K.G. Thomas, A.P. Cole, Roasting Developments-Especially Oxygenated Roasting, Elsevier, Amsterdam, 2016, pp 73-392. [17] T. Wang, H. Zhang, H.R. Yang, J.F. Lv, Oxidation mechanism of pyrite concentrates (PCs) under typical circulating fluidized bed (CFB) roasting conditions and design principles of PCs’ CFB roaster, Chem. Eng. Process. Process. Intensif. 153 (2020) 107944. [18] D.M. Snider, P.J. O’Rourke, M.J. Andrews, Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows, Int. J. Multiph. Flow 24 (8) (1998) 1359-1382. [19] D.M. Snider, Three fundamental granular flow experiments and CPFD predictions, Powder Technol. 176 (1) (2007) 36-46. [20] Y.S. Liang, Y.M. Zhang, T.W. Li, C.X. Lu, A critical validation study on CPFD model in simulating gas-solid bubbling fluidized beds, Powder Technol. 263 (2014) 121-134. [21] D. Tskhakaya, K. Matyash, R. Schneider, F. Taccogna, The particle-in-cell method, Contrib. Plasma Phys. 47 (8-9) (2007) 563-594. [22] X. Shen, L. Jia, Y.L. Wang, B.H. Guo, H.D. Fan, X.L. Qiao, M. Zhang, Y. Jin, Study on dynamic characteristics of residual char of CFB boiler based on CPFD method, Energies 13 (22) (2020) 5883. [23] J. Yan, X.F. Lu, R. Xue, J.Y. Lu, Y. Zheng, Y. Zhang, Z. Liu, Validation and application of CPFD model in simulating gas-solid flow and combustion of a supercritical CFB boiler with improved inlet boundary conditions, Fuel Process. Technol. 208 (2020) 106512. [24] J. Chang, X.R. Ma, X. Wang, X.H. Li, CPFD modeling of hydrodynamics, combustion and NOx emissions in an industrial CFB boiler, Particuology 81 (2023) 174-188. [25] H.P. Liu, S.C. Li, X.X. Xiang, S.S. Gong, C.X. Jia, Q. Wang, B.Z. Sun, Simulation of biogas co-combustion in CFB boiler: Combustion analysis using the CPFD method, Case Stud. Therm. Eng. 59 (2024) 104610. [26] J. Zhang, Y.M. Li, L. Mei, X.L. Yu, X. Lv, J.P. Wang, J. Yan, R.Y. Sun, Study on the effect of secondary air layout on CO reduction performance in a 75 t/h biomass CFB boiler burning wheat straw, Energies 16 (8) (2023) 3312. [27] X.L. Huang, X.L. Jin, L.X. Dong, R.Y. Li, K.X. Yang, Y.H. Li, L. Deng, D.F. Che, CPFD numerical study on tri-combustion characteristics of coal, biomass and oil sludge in a circulating fluidized bed boiler, J. Energy Inst. 113 (2024) 101550. [28] D.G. Raheem, B. Yilmaz, O. Sibel, Comparison of oxygen enriched and oxy-combustion characteristics of lignite in a CFB: Modelling and experimental verification, Powder Technol. 389 (2021) 355-367. [29] Y. Wang, X.Y. Chen, L.P. Xu, M.W. Ma, X.L. Huang, F. Han, Y. Zhou, C. Du, Y.D. Da, L. Deng, Computational particle fluid dynamics simulation on combustion characteristics of blended fuels of coal, biomass, and oil sludge in a 130 t h-1 circulating fluidized bed boiler, Energies 17 (1) (2024) 149. [30] A. Ahmadzadeh, H. Arastoopour, F. Teymour, Numerical simulation of gas and particle flow in a rotating fluidized bed, Ind. Eng. Chem. Res. 42 (12) (2003) 2627-2633. [31] B.H. Lee, K.M. Kim, Y.H. Bae, H.S. Oh, G.B. Kim, C.H. Jeon, Y.H. Ahn, Effect of bed particle size on the gas-particle hydrodynamics and wall erosion characteristics in a 550 MWe USC CFB boiler using CPFD simulation, Energy 254 (2022) 124263. [32] W.P. Adamczyk, P. Kozolub, A. Klimanek, R.A. Bialecki, M. Andrzejczyk, M. Klajny, Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion, Appl. Therm. Eng. 87 (2015) 127-136. [33] X. Chen, J.C. Ma, X. Tian, J.L. Wan, H.B. Zhao, CPFD simulation and optimization of a 50 kWth dual circulating fluidized bed reactor for chemical looping combustion of coal, Int. J. Greenh. Gas Contr. 90 (2019) 102800. [34] S.Q. Sia, W.C. Wang, Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics, Renew. Energy 155 (2020) 248-256. [35] F.M. Auzerais, R. Jackson, W.B. Russel, The resolution of shocks and the effects of compressible sediments in transient settling, J. Fluid Mech. 195 (1988) 437-462. [36] D.M. Snider, S.M. Clark, P.J. O’Rourke, Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers, Chem. Eng. Sci. 66 (6) (2011) 1285-1295. [37] K. Luo, D. Wang, T. Jin, S. Wang, Z. Wang, J.H. Tan, J.R. Fan, Analysis and development of novel data-driven drag models based on direct numerical simulations of fluidized beds, Chem. Eng. Sci. 231 (2021) 116245. [38] W.C. Yang, Handbook of Fluidization and Fluid-Particle Systems, China Particuology 1 (3) (2003) 137. [39] L. Fan, C. Zhu, Principles of Gas-Solid Flows, Cambridge University Press, Cambridge, 1998. [40] D. Kunii, O. Levenspiel, Fluidization Engineering (2nd ed.), Butterworth-Heinemann, Oxford, 1991. [41] C.X. Jia, J.W. Li, J.J. Chen, S.S. Cui, H.P. Liu, Q. Wang, Simulation and prediction of co-combustion of oil shale retorting solid waste and cornstalk in circulating fluidized bed using CPFD method, Appl. Therm. Eng. 165 (2020) 113574. [42] S. Kraft, F. Kirnbauer, H. Hofbauer, CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8MW fuel input, Appl. Energy 190 (2017) 408-420. [43] Y. Hong, B. Fegley Jr, The kinetics and mechanism of pyrite thermal decomposition, Ber. Der Bunsengesellschaft Fur Phys. Chem. 101 (12) (1997) 1870-1881. [44] M. Samouhos, P. Angelopoulos, G. Pilatos, M. Taxiarchou, S. Papageorgiou, Kinetic study of non-isothermal decomposition of a composite diasporic-boehmitic bauxite, IOP Conf. Ser.: Mater. Sci. Eng. 123 (2016) 012048. [45] H.P. Liu, H.W. Sun, Y. Bi, C.X. Jia, L. Zhang, Y.L. Li, H. Qin, Q. Wang, Effect of secondary air on NO emission in a 440 t/h circulating fluidized bed boiler based on CPFD method, Particuology 83 (2023) 18-31. [46] C.M. Xie, R.B. Li, Q.J. Wei, F.Q. Liu, H.L. Zhao, Y.M. Zhang, H.Y. Sohn, Numerical simulation on gas-solid flow during circulating fluidized roasting of bauxite by a computational particle fluid dynamics method, Particuology 90 (2024) 179-188. [47] A. Dutta, P. Basu, An investigation on heat transfer to the standpipe of a circulating fluidized bed boiler, Chem. Eng. Res. Des. 81 (8) (2003) 1003-1014. [48] M.R. Golriz, B. Sunden, A method for temperature measurements in circulating fluidized bed combustors, Exp. Therm. Fluid Sci. 9 (3) (1994) 274-282. [49] J. Lu, X. Lu, H. Liu, H. Wang, H. He, Calculation and analysis of dissipation heat loss in large-scale circulating fluidized bed boilers, Appl. Therm. Eng. 30 (13) (2010) 1839-1844. [50] H.P. Liu, J.W. Li, Q. Wang, Three-dimensional numerical simulation of the co-combustion of oil shale retorting solid waste with cornstalk particles in a circulating fluidized bed reactor, Appl. Therm. Eng. 130 (2018) 296-308. [51] P. Liu, X. Wu, Z.Y. Wang, Y.X. Bo, H.R. Bao, Numerical simulation study on gas-solid flow characteristics and SO2 removal characteristics in circulating fluidized bed desulfurization tower, Chem. Eng. Process. Process. Intensif. 176 (2022) 108974. [52] Q. Ma, F.L. Lei, Y.H. Xiao, Numerical analysis of operating conditions for establishing high-density circulating fluidized bed by CPFD method, Powder Technol. 338 (2018) 446-457. [53] M. Upadhyay, H.C. Park, J.G. Hwang, H.S. Choi, H.N. Jang, Y.C. Seo, Computational particle-fluid dynamics simulation of gas-solid flow in a circulating fluidized bed with air or O2/CO2 as fluidizing gas, Powder Technol. 318 (2017) 350-362. [54] J.H. Yang, H.R. Yang, G. X. Yue, Experimental study on secondary air jet penetration in circulating fluidized bed, J. Power Eng. 28 (4) (2008) 509-513, in Chinese. [55] W. Zheng, M. Zhang, Y. Zhang, J. Lyu, H. Yang, The effect of the secondary air injection on the gas-solid flow characteristics in the circulating fluidized bed, Chem. Eng. Res. Des. 141 (2019) 220-228. [56] M.K. Duan, Design and experimental study of the centrally-located secondary air of a circulating fluidized bed, J. Eng. Therm. Energy Power, (2010). [57] X.B. Xiao, H.R. Yang, H. Zhang, J.F. Lu, G.X. Yue, Research on carbon content in fly ash from circulating fluidized bed boilers, Energy Fuels 19 (4) (2005) 1520-1525. |