Chinese Journal of Chemical Engineering ›› 2025, Vol. 88 ›› Issue (12): 152-162.DOI: 10.1016/j.cjche.2025.06.031
Previous Articles Next Articles
Shuhai Zhao, Lintong Hu, Xinhao Xue, Xiaolong Li, Yunpeng Zhou, Can Cui, Minjie Shi, Chao Yan
Received:2025-04-23
Revised:2025-05-15
Accepted:2025-06-11
Online:2025-09-05
Published:2026-02-09
Contact:
Lintong Hu,E-mail:hulintong2020@just.edu.cn;Chao Yan,E-mail:chaoyan@just.edu.cn
Supported by:Shuhai Zhao, Lintong Hu, Xinhao Xue, Xiaolong Li, Yunpeng Zhou, Can Cui, Minjie Shi, Chao Yan
通讯作者:
Lintong Hu,E-mail:hulintong2020@just.edu.cn;Chao Yan,E-mail:chaoyan@just.edu.cn
基金资助:Shuhai Zhao, Lintong Hu, Xinhao Xue, Xiaolong Li, Yunpeng Zhou, Can Cui, Minjie Shi, Chao Yan. Boosting high-energy-density zinc-ion capacitors with an ultra-stable redox mediator[J]. Chinese Journal of Chemical Engineering, 2025, 88(12): 152-162.
Shuhai Zhao, Lintong Hu, Xinhao Xue, Xiaolong Li, Yunpeng Zhou, Can Cui, Minjie Shi, Chao Yan. Boosting high-energy-density zinc-ion capacitors with an ultra-stable redox mediator[J]. 中国化学工程学报, 2025, 88(12): 152-162.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.06.031
| [1] G. Crabtree, The coming electric vehicle transformation, Science 366 (6464) (2019) 422-424. [2] L.L. Fan, Z.H. Li, N.P. Deng, Recent advances in vanadium-based materials for aqueous metal ion batteries: Design of morphology and crystal structure, evolution of mechanisms and electrochemical performance, Energy Storage Mater. 41 (2021) 152-182. [3] W. Ling, H. Wang, Z. Chen, Z.Y. Ji, J.Q. Wang, J. Wei, Y. Huang, Intrinsic structure modification of electrode materials for aqueous metal-ion and metal-air batteries, Adv. Funct. Mater. 31 (5) (2021) 2006855. [4] S. Tian, Q. Song, X. Zhang, P.B. Gao, J.L. Mu, G.C. Yin, Y. Feng, T. Zhou, J. Zhou, Unveiling the role of oxygen doping in activated carbon cathode for potassium-ion capacitors, J. Power Sources 579 (2023) 233289. [5] D.P. Chatterjee, A.K. Nandi, A review on the recent advances in hybrid supercapacitors, J. Mater. Chem. A 9 (29) (2021) 15880-15918. [6] C. Li, L.J. Yan, X.L. Li, M.J. Wang, J. Kong, W.R. Bao, L.P. Chang, Pitch-based 3D tremella-like porous carbon with cavitary structures: Applications in symmetric capacitors and zinc ion capacitors, J. Energy Storage 86 (2024) 111220. [7] Z.D. Huang, T.R. Wang, H. Song, X.L. Li, G.J. Liang, D.H. Wang, Q. Yang, Z. Chen, L.T. Ma, Z.X. Liu, B. Gao, J. Fan, C.Y. Zhi, Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors, Angew. Chem. Int. Ed 60 (2) (2021) 1011-1021. [8] K. Xiao, X.D. Jiang, S.P. Zeng, J.R. Chen, T. Hu, K. Yuan, Y.W. Chen, Porous structure-electrochemical performance relationship of carbonaceous electrode-based zinc ion capacitors, Adv. Funct. Mater. 34 (44) (2024) 2405830. [9] J.H. Huang, Z.W. Guo, Y.Y. Ma, D. Bin, Y.G. Wang, Y.Y. Xia, Recent progress of rechargeable batteries using mild aqueous electrolytes, Small Meth. 3 (1) (2019) 1800272. [10] H. Zhang, X. Liu, H.H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries, Angew. Chem. Int. Ed 60 (2) (2021) 598-616. [11] A. Jagadale, X. Zhou, R. Xiong, D.P. Dubal, J. Xu, S. Yang, Lithium ion capacitors (LICs): development of the materials, Energy Storage Mater. 19 (2019) 314-329. [12] H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors, Adv. Mater. 29 (46) (2017) 1702093. [13] B. Li, J.S. Zheng, H.Y. Zhang, L.M. Jin, D.J. Yang, H. Lv, C. Shen, A. Shellikeri, Y.R. Zheng, R.Q. Gong, J.P. Zheng, C.M. Zhang, Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors, Adv. Mater. 30 (17) (2018) e1705670. [14] Y.J. Wu, Y.J. Sun, Y. Tong, X. Liu, J.F. Zheng, D.X. Han, H.Y. Li, L. Niu, Recent advances in potassium-ion hybrid capacitors: Electrode materials, storage mechanisms and performance evaluation, Energy Storage Mater. 41 (2021) 108-132. [15] M.X. Chen, L. Wang, X.H. Sheng, T. Wang, J. Zhou, S.Y. Li, X.H. Shen, M. Zhang, Q.S. Zhang, X.Z. Yu, J. Zhu, B.G. Lu, An ultrastable nonaqueous potassium-ion hybrid capacitor, Adv. Funct. Mater. 30 (40) (2020) 2004247. [16] X. Zhang, S. Tian, S. Liu, T.T. Wang, J.Y. Huang, P.B. Gao, Y. Feng, J. Zhou, T. Zhou, Tellurium-doped MoS2/carbon composite nanotubes for potassium-ion capacitors, Appl. Phys. Lett. 125 (26) (2024) 263904. [17] C.R. Xu, J.L. Mu, T. Zhou, S. Tian, P.B. Gao, G.C. Yin, J. Zhou, F. Li, Surface redox pseudocapacitance boosting vanadium nitride for high-power and ultra-stable potassium-ion capacitors, Adv. Funct. Mater. 32 (38) (2022) 2206501. [18] S.T. Geng, T. Zhou, M.Y. Jia, X.Y. Shen, P.B. Gao, S. Tian, P.F. Zhou, B. Liu, J. Zhou, S.P. Zhuo, F. Li, Carbon-coated WS2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors, Energy Environ. Sci. 14 (5) (2021) 3184-3193. [19] P.J. Wang, X.S. Xie, Z.Y. Xing, X.H. Chen, G.Z. Fang, B.G. Lu, J. Zhou, S.Q. Liang, H.J. Fan, Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors, Adv. Energy Mater. 11 (30) (2021) 2101158. [20] H. Tang, J.J. Yao, Y.R. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review, Adv. Energy Mater. 11 (14) (2021) 2003994. [21] J. Yin, W.L. Zhang, W.X. Wang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes, Adv. Energy Mater. 10 (37) (2020) 2001705. [22] J. Yin, W.L. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Electrochemical zinc ion capacitors: fundamentals, materials, and systems, Adv. Energy Mater. 11 (21) (2021) 2100201. [23] L.B. Dong, W. Yang, W. Yang, Y. Li, W.J. Wu, G.X. Wang, Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors, J. Mater. Chem. A 7 (23) (2019) 13810-13832. [24] S. Nagamuthu, Y.M. Zhang, Y. Xu, J.F. Sun, Y.M. Zhang, F.U. Zaman, D.K. Denis, L.R. Hou, C.Z. Yuan, Non-lithium-based metal ion capacitors: recent advances and perspectives, J. Mater. Chem. A 10 (2) (2022) 357-378. [25] L.T. Hu, P. Xiao, L.L. Xue, H.Q. Li, T.Y. Zhai, The rising zinc anodes for high-energy aqueous batteries, EnergyChem 3 (2) (2021) 100052. [26] S.Z. Cui, W.X. Miao, X.B. Wang, K.J. Sun, H. Peng, G.F. Ma, Multifunctional zincophilic hydrogel electrolyte with abundant hydrogen bonds for zinc-ion capacitors and supercapacitors, ACS Nano 18 (19) (2024) 12355-12366. [27] W.C. Du, E.H. Ang, Y. Yang, Y.F. Zhang, M.H. Ye, C.C. Li, Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries, Energy Environ. Sci. 13 (10) (2020) 3330-3360. [28] D. Sui, M.M. Wu, K.Y. Shi, C.L. Li, J.W. Lang, Y.L. Yang, X.Y. Zhang, X.B. Yan, Y.S. Chen, Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond, Carbon 185 (2021) 126-151. [29] Z.C. Sun, S.Y. Chu, X.Y. Jiao, Z.J. Li, L.Y. Jiang, Research progress of carbon cathode materials for zinc-ion capacitors, J. Energy Storage 75 (2024) 109571. [30] L.T. Hu, D.Q. Guo, G. Feng, H.Q. Li, T.Y. Zhai, Asymmetric behavior of positive and negative electrodes in carbon/carbon supercapacitors and its underlying mechanism, J. Phys. Chem. C 120 (43) (2016) 24675-24681. [31] L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, T.Y. Zhai, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors, J. Mater. Chem. A 4 (39) (2016) 15006-15014. [32] W.J. Tian, H.Y. Zhang, X.G. Duan, H.Q. Sun, G.S. Shao, S.B. Wang, Porous carbons: structure-oriented design and versatile applications, Adv. Funct. Mater. 30 (17) (2020) 1909265. [33] L.H. Zu, W. Zhang, L.B. Qu, L.L. Liu, W. Li, A.B. Yu, D.Y. Zhao, Mesoporous materials for electrochemical energy storage and conversion, Adv. Energy Mater. 10 (38) (2020) 2002152. [34] H.Q. Pan, X. Jiao, W.C. Zhang, L.L. Fan, Z.H. Yuan, C.G. Zhang, Supercapacitor with Ultra-High power and energy density enabled by Nitrogen/Oxygen-Doped interconnected hollow carbon Nano-Onions, Chem. Eng. J. 484 (2024) 149663. [35] S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors, Adv. Energy Mater. 10 (32) (2020) 2001239. [36] X. Feng, Y. Bai, M.Q. Liu, Y. Li, H.Y. Yang, X.R. Wang, C. Wu, Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials, Energy Environ. Sci. 14 (4) (2021) 2036-2089. [37] S. Radhakrishnan, A. Patra, G. Manasa, M.A. Belgami, S. Mun Jeong, C.S. Rout, Borocarbonitride-based emerging materials for supercapacitor applications: recent advances, challenges, and future perspectives, Adv. Sci. 11 (4) (2024) e2305325. [38] F. Mo, Y.Y. Wang, T.T. Song, X.L. Wu, Nitrogen and oxygen Co-doped hierarchical porous carbon for zinc-ion hybrid capacitor, J. Energy Storage 72 (2023) 108228. [39] L. Yang, X.J. He, Y.C. Wei, H.H. Bi, F. Wei, H.Q. Li, C.Z. Yuan, J.S. Qiu, Interconnected N/P Co-doped carbon nanocage as high capacitance electrode material for energy storage devices, Nano Res. 15 (5) (2022) 4068-4075. [40] D. Lintong Hu, P. Tianyou Zhai, P. Huiqiao Li, P. Yonggang Wang, Redox-mediator-enhanced electrochemical capacitors: recent advances and future perspectives, ChemSusChem 12 (6) (2019) 1118-1132. [41] N.J. Yang, S.Y. Yu, W.J. Zhang, H.M. Cheng, P. Simon, X. Jiang, Electrochemical capacitors with confined redox electrolytes and porous electrodes, Adv. Mater. 34 (34) (2022) 2202380. [42] L.T. Hu, C. Shi, K. Guo, T.Y. Zhai, H.Q. Li, Y.G. Wang, Electrochemical double-layer capacitor energized by adding an ambipolar organic redox radical into the electrolyte, Angew. Chem. Int. Ed 57 (27) (2018) 8214-8218. [43] B. Evanko, S.W. Boettcher, S.J. Yoo, G.D. Stucky, Redox-enhanced electrochemical capacitors: status, opportunity, and best practices for performance evaluation, ACS Energy Lett. 2 (11) (2017) 2581-2590. [44] B.K. Saikia, S.M. Benoy, M. Bora, J. Tamuly, M. Pandey, D. Bhattacharya, A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials, Fuel 282 (2020) 118796. [45] G.Y. Wang, X.H. Wang, J.F. Sun, Y.M. Zhang, L.R. Hou, C.Z. Yuan, Porous carbon nanofibers derived from low-softening-point coal pitch towards all-carbon potassium ion hybrid capacitors, Rare Met. 41 (11) (2022) 3706-3716. [46] Y.M. Zhang, G.Y. Wang, P. Yue, J.F. Sun, M.S. Gao, J.L. Wang, L.R. Hou, M. Chen, C.Z. Yuan, Construction of low-softening-point coal pitch derived carbon nanofiber films as self-standing anodes toward sodium dual-ion batteries, Adv. Funct. Mater. 35 (6) (2025) 2414761. [47] X.N. Chen, X.H. Wang, D. Fang, A review on C1s XPS-spectra for some kinds of carbon materials, fuller nanotub carbon Nanostruct 28 (12) (2020) 1048-1058. [48] S. Biniak, G. Szymanski, J. Siedlewski, S. A, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon 35 (12) (1997) 1799-1810. [49] P.G. Liu, W.F. Liu, Y.P. Huang, P.L. Li, J. Yan, K.Y. Liu, Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage, Energy Storage Mater. 25 (2020) 858-865. [50] Y.Y. Lu, Z.W. Li, Z.Y. Bai, H.Y. Mi, C.C. Ji, H. Pang, C. Yu, J.S. Qiu, High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N Co-doped carbon cathode, Nano Energy 66 (2019) 104132. [51] Y.H. Zhang, F. Li, T.Y. Li, M.Q. Zhang, Z.Z. Yuan, G.J. Hou, J. Fu, C.K. Zhang, X.F. Li, Insights into an air-stable methylene blue catholyte towards kW-scale practical aqueous organic flow batteries, Energy Environ. Sci. 16 (1) (2023) 231-240. [52] M.Y. Tang, Q.N. Zhu, P.F. Hu, L. Jiang, R.Y. Liu, J.W. Wang, L.W. Cheng, X.H. Zhang, W.X. Chen, H. Wang, Ultrafast rechargeable aqueous zinc-ion batteries based on stable radical chemistry, Adv. Funct. Mater. 31 (33) (2021) 2102011. [53] C. Li, C.Q. Wu, K. Zhang, M.Q. Chen, Y.S. Wang, J.J. Shi, Z.Y. Tang, The charge transfer effect on SERS in a gold-decorated surface defect anatase nanosheet/methylene blue (MB) system, New J. Chem. 45 (42) (2021) 19775-19786. [54] C.Y. Li, Y.Q. Huang, K.Q. Lai, B.A. Rasco, Y.X. Fan, Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy, Food Contr. 65 (2016) 99-105. [55] O.V. Ovchinnikov, A.V. Evtukhova, T.S. Kondratenko, M.S. Smirnov, V.Y. Khokhlov, O.V. Erina, Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules, Vib. Spectrosc. 86 (2016) 181-189. [56] R. Ali, I.A.I. Ali, S. Messaoudi, F.M. Alminderej, S.M. Saleh, An effective optical chemosensor film for selective detection of mercury ions, J. Mol. Liq. 336 (2021) 116122. [57] A. Katafias, P. Kita, G. Wrzeszcz, A. Mills, Kinetics of the methylene blue oxidation by cerium(IV) in sulphuric acid solutions, Transition Met. Chem. 32 (1) (2007) 31-37. [58] H.X. Li, W.J. Shi, X.H. Zhang, Y. Liu, L.Y. Liu, J.M. Dou, Enhancement of zinc-ion storage capability by synergistic effects on dual-ion adsorption in hierarchical porous carbon for high-performance aqueous zinc-ion hybrid capacitors, J. Colloid Interface Sci. 667 (2024) 700-712. [59] R.Y. Wang, W.Q. Wang, M. Sun, Y.J. Hu, G.C. Wang, Long-lifespan zinc-ion capacitors enabled by anodes integrated with interconnected mesoporous chitosan membranes through electrophoresis-driven phase separation, Angew. Chem. Int. Ed 63 (10) (2024) e202317154. [60] W.Q. Wang, L. Gao, Z.M. Kong, B.C. Ma, M.Y. Han, G.C. Wang, C.Z. Li, Integrated construction of a long-life stretchable zinc-ion capacitor, Adv. Mater. 35 (39) (2023) e2303353. [61] J. Zeng, H. Chen, L.B. Dong, X. Guo, Anti-polyelectrolyte effect of zwitterionic hydrogel electrolytes enabling high-voltage zinc-ion hybrid capacitors, Adv. Funct. Mater. 34 (21) (2024) 2314651. |
| [1] | Fan Zhang, Miaomiao Zhao, Xiaoyu Jia, Chen Li, Degang Ma. Adsorption, separation and recovery performance of spherical PR/ CMC/AC composites for cadmium-contaminated soil remediation [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 199-207. |
| [2] | Jingru Dou, Yingxuan Wen, Fangfang Zhang, Falong Shan, Shougui Wang, Jipeng Dong, Fei Gao, Guanghui Chen. Construction of hydrophobic CuCl@AC–PTFE composites with an enhanced Cu(I) stability for efficient CO adsorption [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 23-31. |
| [3] | Yiyang Qiu, Chong Liu, Xueting Meng, Yuesen Liu, Jiangtao Fan, Guojun Lan, Ying Li. Synergistic effect between nitrogen-doped sites and metal chloride for carbon supported extra-low mercury catalysts in acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 145-154. |
| [4] | Zhengtao Wei, Xiaofei Wang, Xuliang Lin, Xueqing Qiu. In-situ construction of morphology-controllable flower-shaped lignin-derived carbon/ZnO composite for efficient photocatalytic degradation of organic dyes [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 241-251. |
| [5] | Shuaishuai Zhang, Xinan Sun, Qingwen Luo, Lin Chi, Peng Sun, Lianke Zhang. The Ce-modified biochar for efficient removal of methylene blue dye: Kinetics, isotherms and reusability studies [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 57-65. |
| [6] | Yilin Wang, Shijie Li, Jianhui Qi, Hui Li, Kuihua Han, Jianli Zhao. Preparation and characterization of high performance super activated carbon based on coupled coal/sargassum precursors [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 81-92. |
| [7] | Mohammed Benjelloun, Youssef Miyah, Salma Ssouni, Soulaiman Iaich, Mohamed El-habacha, Salek Lagdali, Khadija Saka, El Mustafa Iboustaten, Abdelaziz Ait Addi, Sanae Lairini, Rabia Bouslamti. Capparis spinosa L waste activated carbon as an efficient adsorbent for crystal violet toxic dye removal: Modeling, optimization by experimental design, and ecological analysis [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 283-302. |
| [8] | Linghui Kong, Chao Li, Runxing Sun, Shu Zhang, Yi Wang, Jun Xiang, Song Hu, Dong Wang, Chuanjun Leng, Xun Hu. Thermal pretreatment of willow branches impacts yield and pore development of activated carbon in subsequent activation with ZnCl2 via modifying cellulose structure [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 227-237. |
| [9] | Yifang Mi, Wenqiang Wang, Sen Zhang, Yalong Guo, Yufeng Zhao, Guojin Sun, Zhihai Cao. Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 106-116. |
| [10] | Siang Chen, Wenling Wu, Zhaoyang Niu, Deqi Kong, Wenbin Li, Zhongli Tang, Donghui Zhang. High adsorption selectivity of activated carbon and carbon molecular sieve boosting CO2/N2 and CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 282-297. |
| [11] | Wenming Hao, Basma I. Waisi, Timothy M. Vadas, Jeffrey R. McCutcheon. Chemically activated carbon nanofibers for adsorptive removal of bisphenol-A: Batch adsorption and breakthrough curve study [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 248-259. |
| [12] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
| [13] | Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 162-172. |
| [14] | Saptarshi Ghosh, Kamalesh Sen, Priyanka Debnath, Arghadip Mondal, Naba Kumar Mondal. Enhanced photocatalytic activity of methylene blue using heterojunction Ag@TiO2 nanocomposite: Mechanistic and optimization study [J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 49-63. |
| [15] | Huan Xiang, Huiping Zhang, Pengfei Liu, Ying Yan. Adsorption dynamics of ethane from air in structured fixed beds with different microfibrous composites [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 14-24. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
