Chinese Journal of Chemical Engineering ›› 2025, Vol. 88 ›› Issue (12): 284-295.DOI: 10.1016/j.cjche.2025.07.019
Previous Articles Next Articles
Yi Wang1, Yucong Ge1, Li Yang1, Fang Liu1, Qingfang Li2, Yi Li2, Kunlei Liu3,4
Received:2025-04-13
Revised:2025-06-25
Accepted:2025-07-28
Online:2025-09-26
Published:2026-02-09
Contact:
Li Yang,E-mail:li.yang@cumt.edu.cn
Supported by:Yi Wang1, Yucong Ge1, Li Yang1, Fang Liu1, Qingfang Li2, Yi Li2, Kunlei Liu3,4
通讯作者:
Li Yang,E-mail:li.yang@cumt.edu.cn
基金资助:Yi Wang, Yucong Ge, Li Yang, Fang Liu, Qingfang Li, Yi Li, Kunlei Liu. Preparation and performance analysis of non-aqueous absorbents based on alcohol ether organic compounds for CO2 capture[J]. Chinese Journal of Chemical Engineering, 2025, 88(12): 284-295.
Yi Wang, Yucong Ge, Li Yang, Fang Liu, Qingfang Li, Yi Li, Kunlei Liu. Preparation and performance analysis of non-aqueous absorbents based on alcohol ether organic compounds for CO2 capture[J]. 中国化学工程学报, 2025, 88(12): 284-295.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.07.019
| [1] A.K. Patidar, R.K. Singh, T. Choudhury, The prominence of carbon capture, utilization and storage technique, a special consideration on India, Gas Sci. Eng. 115 (2023) 204999. [2] J.X. Du, W. Yang, L.L. Xu, L. Bei, S.Y. Lei, W. Li, H.T. Liu, B. Wang, L.S. Sun, Review on post-combustion CO2 capture by amine blended solvents and aqueous ammonia, Chem. Eng. J. 488 (2024) 150954. [3] S. Fawzy, A.I. Osman, J. Doran, D.W. Rooney, Strategies for mitigation of climate change: a review, Environ. Chem. Lett. 18 (6) (2020) 2069-2094. [4] S.Y. Chen, J.F. Liu, Q. Zhang, F. Teng, B.C. McLellan, A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality, Renew. Sustain. Energy Rev. 167 (2022) 112537. [5] K.O. Yoro, M.O. Daramola, P.T. Sekoai, E.K. Armah, U.N. Wilson, Advances and emerging techniques for energy recovery during absorptive CO2 capture: a review of process and non-process integration-based strategies, Renew. Sustain. Energy Rev. 147 (2021) 111241. [6] S.H. Zhang, Y. Shen, C.H. Zheng, Q.Q. Xu, Y.F. Sun, M. Huang, L. Li, X.W. Yang, H. Zhou, H.L. Ma, Z.D. Li, Y.H. Zhang, W.Q. Liu, X. Gao, Recent advances, challenges, and perspectives on carbon capture, Front. Environ. Sci. Eng. 18 (6) (2024) 75. [7] K. Storrs, I. Lyhne, R. Drustrup, A comprehensive framework for feasibility of CCUS deployment: a meta-review of literature on factors impacting CCUS deployment, Int. J. Greenh. Gas Control 125 (2023) 103878. [8] A. Dubey, A. Arora, Advancements in carbon capture technologies: a review, J. Clean. Prod. 373 (2022) 133932. [9] G.Z. Liu, B.F. Cai, Q. Li, X. Zhang, T. Ouyang, China's pathways of CO2 capture, utilization and storage under carbon neutrality vision 2060, Carbon Manag. 13 (1) (2022) 435-449. [10] H. Hekmatmehr, A. Esmaeili, M. Pourmahdi, S. Atashrouz, A. Abedi, M. Ali Abuswer, D. Nedeljkovic, M. Latifi, S. Farag, A. Mohaddespour, Carbon capture technologies: a review on technology readiness level, Fuel 363 (2024) 130898. [11] Z.Z. Zhang, Y.C. Ge, L. Yang, H. Xing, F. Liu, X. Yang, Q.F. Li, Y. Li, Enhancing CO2 absorption with compact multiflow absorber: evaluation of operational factors, Ind. Eng. Chem. Res. 63 (13) (2024) 5618-5628. [12] D. Liu, C. Wan, X. Liu, Y. Yu, Research advances in chemical absorbents for carbon dioxide capture, Low-Carbon Chem. Chem. Eng. 49 (2024) 94-104+112. [13] L.L. Li, X. He, P. Li, S. Chen, C.X. Hai, Y.X. Sun, Q. Xu, S.D. Dong, L.X. Ma, Y. Zhou, Efficient carbon dioxide capture and reduced desorption energy consumption with bifunctional aluminium-modified MWCNTs catalyst, Fuel 385 (2025) 11. [14] B. Aghel, S. Janati, S. Wongwises, M.S. Shadloo, Review on CO2 capture by blended amine solutions, Int. J. Greenh. Gas Control 119 (2022) 103715. [15] B.H. Lv, K.X. Yang, X.B. Zhou, Z.M. Zhou, G.H. Jing, 2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture, Appl. Energy 264 (2020) 114703. [16] W.H. Jiang, Y.C. Lin, C.Q. Sun, Y. Sun, Y.L. Zhu, Comparative review for enhancing CO2 capture efficiency with mixed amine systems and catalysts, Molecules 29 (19) (2024) 4618. [17] S. Nakrak, P. Tontiwachwuthikul, H.X. Gao, Z.W. Liang, T. Sema, Comprehensive mass transfer analysis of CO2 absorption in high potential ternary AMP-PZ-MEA solvent using three-level factorial design, Environ. Sci. Pollut. Res. Int. 30 (4) (2023) 10001-10023. [18] H.C. Shi, X.F. Cheng, J.C. Peng, H.L. Feng, P. Tontiwachwuthikul, J.W. Hu, The CO2 absorption and desorption analysis of tri-solvent MEA + EAE + AMP compared with MEA + BEA + AMP along with coordination effects evaluation, Environ. Sci. Pollut. Res. Int. 29 (27) (2022) 40686-40700. [19] Y.S. Wang, Y.N. Dong, L.L. Zhang, G.W. Chu, H.K. Zou, B.C. Sun, X.F. Zeng, Carbon dioxide capture by non-aqueous blend in rotating packed bed reactor: absorption and desorption investigation, Sep. Purif. Technol. 269 (2021) 118714. [20] F.A. Chowdhury, K. Goto, H. Yamada, Y. Matsuzaki, A screening study of alcohol solvents for alkanolamine-based CO2 capture, Int. J. Greenh. Gas Control 99 (2020) 103081. [21] Y.J. Zhang, J. Dong, P. Ning, L.L. Wang, J.H. Wang, Y.X. Ma, X.Q. Wang, Investigation of CO2 capture performance of polyamine/organic alcohol ether non-aqueous absorbent regulated by ethylene glycol, J. Environ. Chem. Eng. 12 (5) (2024) 113694. [22] L.T. Yin, X.J. Li, L. Zhang, J.W. Li, Characteristics of carbon dioxide desorption from MEA-based organic solvent absorbents, Int. J. Greenh. Gas Control 104 (2021) 103224. [23] F. Bougie, D. Pokras, X.F. Fan, Novel non-aqueous MEA solutions for CO2 capture, Int. J. Greenh. Gas Control 86 (2019) 34-42. [24] S.M. Chen, S.Y. Chen, Y.C. Zhang, L. Qin, C. Guo, J. Chen, Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions, Int. J. Greenh. Gas Control 47 (2016) 151-158. [25] Z.L. Chen, T. Wang, C. Li, M.X. Fang, W. Chen, X.M. Hu, W. Zhang, L. Zhang, W.Y. Fan, S.J. Zeng, Research on CO2 capture performance of DMEDA water-lean absorbents based on molecular dynamics, Sep. Purif. Technol. 354 (2025) 128924. [26] Y.C. Ge, Z.Y. Wang, L. Yang, X.X. Heng, Z.Z. Zhang, Y. Wang, F. Liu, X. Yang, B. Liu, K.L. Liu, CO2 capture performance and foaming mechanism of modified amine-based absorbents: a study based on molecular dynamics, Carbon Capture Sci. Technol. 15 (2025) 100384. [27] G. Gao, W.F. Jiang, X.S. Li, Z.H. Zhao, C. Jiang, C. Luo, F. Wu, L.Q. Zhang, Novel assessment of highly efficient polyamines for post-combustion CO2 capture: absorption heat, reaction rate, CO2 cyclic capacity, and phase change behavior, Sep. Purif. Technol. 306 (2023) 122615. [28] T.T. Ping, Y. Dong, S.F. Shen, Energy-efficient CO2 capture using nonaqueous absorbents of secondary alkanolamines with a 2-butoxyethanol cosolvent, ACS Sustain. Chem. Eng. 8 (49) (2020) 18071-18082. [29] W. Conway, S. Bruggink, Y. Beyad, W.L. Luo, I. Melian-Cabrera, G. Puxty, P. Feron, CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes, Chem. Eng. Sci. 126 (2015) 446-454. [30] H.C. Shi, M.Q. Cui, J.X. Fu, W.H. Dai, M. Huang, J.J. Han, L.Q. Quan, P. Tontiwachwuthikul, Z.W. Liang, Application of “coordinative effect” into tri-solvent MEA+BEA+AMP blends at concentrations of 0.1 + 2 + 2~0.5 + 2 + 2 mol/L with absorption, desorption and mass transfer analyses, Int. J. Greenh. Gas Control 107 (2021) 103267. [31] R. Ramezani, I.M. Bernhardsen, R. Di Felice, H.K. Knuutila, Physical properties and reaction kinetics of CO2 absorption into unloaded and CO2 loaded viscous monoethanolamine (MEA) solution, J. Mol. Liq. 329 (2021) 115569. [32] A.K. Ziyada, A. Osman, A.A. Elbashir, F. Rajab, A.M. Khan, M.M. Ali Omar, C.D. Wilfred, Effect of allyl, benzyl, and hydroxyl groups on the CO2 absorption capacity of propanenitrile imidazolium-based ionic liquids incorporating dioctylsulfosuccinate anion, Ionics 29 (11) (2023) 4659-4667. [33] H.Y. Hu, W.J. Xie, H.R. Li, L.N. He, Ether chain-modified alkanolguanidine for CO2 capture and subsequent conversion, Carbon Capture Sci. Technol. 13 (2024) 100284. [34] S. Liu, H. Ling, J. Lv, H.X. Gao, Y.Q. Na, Z.W. Liang, New insights and assessment of primary alkanolamine/sulfolane biphasic solutions for post-combustion CO2 capture: absorption, desorption, phase separation, and technological process, Ind. Eng. Chem. Res. 58 (44) (2019) 20461-20471. [35] Z. Chen, Research progress of water-lean solvents system for post-combustion CO2 capture, Petrol. New Energy 35 (2023) 74-82+100. [36] W. Tian, K. Ma, J.Y. Ji, S.Y. Tang, S. Zhong, C.J. Liu, H.R. Yue, B. Liang, Nonaqueous MEA/PEG200 absorbent with high efficiency and low energy consumption for CO2 capture, Ind. Eng. Chem. Res. 60 (10) (2021) 3871-3880. [37] K. Li, W.D. Wu, L. Peng, H. Zhang, Study on viscosity characteristics of CO2-ionic liquid mixture used for compression-absorption refrigeration systems, J. Mol. Liq. 337 (2021) 116240. [38] M. Zhao, L. Huang, Y.S. Gao, Z.L. Wang, S.Y. Liang, X.C. Zhu, Q. Wang, H. He, D. O'Hare, Design of ultra-stable solid amine adsorbents and mechanisms of hydroxyl group-dependent deactivation for reversible CO2 capture from flue gas, Nano-Micro Lett. 17 (1) (2025) 170. [39] B. Aghel, S. Sahraie, E. Heidaryan, Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor, Energy 201 (2020) 117618. [40] M.K. Kang, S.B. Jeon, J.H. Cho, J.S. Kim, K.J. Oh, Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions, Int. J. Greenh. Gas Control 63 (2017) 281-288. [41] H. Guo, C.X. Li, X.Q. Shi, H. Li, S.F. Shen, Nonaqueous amine-based absorbents for energy efficient CO2 capture, Appl. Energy 239 (2019) 725-734. [42] J. Gao, J. Yin, F.F. Zhu, X. Chen, M. Tong, W.Z. Kang, Y.B. Zhou, J. Lu, Study on absorption and regeneration performance of novel hybrid solutions for CO2 capture, China Pet. Process. Petrochem. Technol. 18 (2016) 66-72. [43] U.H. Bhatti, S. Nam, S. Park, I.H. Baek, Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration, ACS Sustainable Chem. Eng. 6 (9) (2018) 12079-12087. [44] Y.C. Ge, Z.Z. Zhang, L. Yang, F. Liu, X. Yang, K.L. Liu, Surfactant-modified monoethanolamine for better foaming to enhance CO2 removal efficiency, Chem. Eng. J. 498 (2024) 155440. [45] X.L. Li, X.B. Zhou, J.W. Wei, Y.M. Fan, L. Liao, H.Q. Wang, Reducing the energy penalty and corrosion of carbon dioxide capture using a novel nonaqueous monoethanolamine-based biphasic solvent, Sep. Purif. Technol. 265 (2021) 118481. [46] S. Wada, T. Kushida, H. Itagaki, T. Shibue, H. Kadowaki, J. Arakawa, Y. Furukawa, 13C NMR study on carbamate hydrolysis reactions in aqueous amine/CO2 solutions, Int. J. Greenh. Gas Control 104 (2021) 103175. [47] T.B. Jorgensen, K.L. Liu, J.G. Thompson, Examining the reactions of ethanolamine's thermal degradation compounds in carbon capture through 1H NMR and 13C NMR, Ind. Eng. Chem. Res. 63 (25) (2024) 10863-10878. [48] R.J. Wang, S.S. Liu, L.D. Wang, Q.W. Li, S.H. Zhang, B. Chen, L. Jiang, Y.F. Zhang, Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas, Appl. Energy 242 (2019) 302-310. [49] F. Barzagli, F. Mani, M. Peruzzini, A comparative study of the CO2 absorption in some solvent-free alkanolamines and in aqueous monoethanolamine (MEA), Environ. Sci. Technol. 50 (13) (2016) 7239-7246. [50] Y.M. Zhao, Y.C. Zhang, Q. Liu, X.W. Guo, Y. Cao, N. Xu, T. Qi, Y.B. Chen, S.Y. Chen, Energy-efficient carbon dioxide capture using piperazine (PZ) activated EMEA+DEEA water lean solvent: performance and mechanism, Sep. Purif. Technol. 316 (2023) 123761. [51] G.Y. Chen, G.J. Chen, M. Peruzzini, R. Zhang, F. Barzagli, Understanding the potential benefits of blended ternary amine systems for CO2 capture processes through 13C NMR speciation study and energy cost analysis, Sep. Purif. Technol. 291 (2022) 120939. [52] F. Barzagli, F. Mani, Direct CO2 air capture with aqueous 2-(ethylamino)ethanol and 2-(2-aminoethoxy)ethanol: 13C NMR speciation of the absorbed solutions and study of the sorbent regeneration improved by a transition metal oxide catalyst, Inorg. Chim. Acta. 518 (2021) 120256. [53] G.J. Chen, G.Y. Chen, M. Peruzzini, F. Barzagli, R. Zhang, Investigating the performance of ethanolamine and benzylamine blends as promising sorbents for postcombustion CO2 capture through 13C NMR speciation and heat of CO2 absorption analysis, Energy Fuel. 36 (16) (2022) 9203-9212. [54] X.B. Zhou, C. Liu, Y.M. Fan, L.H. Zhang, S. Tang, S.P. Mo, Y.N. Zhu, Z.Q. Zhu, Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: performance, mechanism, and thermodynamics, Energy 255 (2022) 124570. [55] X.S. Li, J. Liu, W.F. Jiang, G. Gao, F. Wu, C. Luo, L.Q. Zhang, Low energy-consuming CO2 capture by phase change absorbents of amine/alcohol/H2O, Sep. Purif. Technol. 275 (2021) 119181. [56] A. Shohrat, M. Zhang, H. Hu, X.Y. Yang, L. Liu, H. Huang, Mechanism study on CO2 capture by ionic liquids made from TFA blended with MEA and MDEA, Int. J. Greenh. Gas Control 119 (2022) 103709. [57] Z.Z. Zhang, Y.C. Ge, L. Yang, F. Liu, X. Yang, Q.F. Li, Y. Li, K.L. Liu, Innovative compact multi-fluid absorber for CO2 capture using advanced absorbents and microbubble technology, Sep. Purif. Technol. 362 (2025) 131744. [58] Y.C. Guo, C. Cai, Y.H. Zhang, Observation of conformational changes in ethylene glycol-water complexes by FTIR-ATR spectroscopy and computational studies, 8 (5) (2018) 055308. [59] C.H. Sun, P.K. Dutta, Infrared spectroscopic study of reaction of carbon dioxide with aqueous monoethanolamine solutions, Ind. Eng. Chem. Res. 55 (22) (2016) 6276-6283. [60] W.B. Qian, J. Hao, M.J. Zhu, P.X. Sun, K. Zhang, X.X. Wang, X. Xu, Development of green solvents for efficient post-combustion CO2 capture with good regeneration performance, J. CO2 Util. 59 (2022) 101955. [61] T.T. Ping, Y. Dong, S.F. Shen, Densities, viscosities and spectroscopic study of partially CO2-loaded nonaqueous blends of 2-butoxyethanol with 2-(ethylamino)ethanol and 2-(butylamino)ethanol at temperatures of (293.15 to 353.15) K, J. Mol. Liq. 312 (2020) 113389. [62] A. Syauqi, A. Allamyradov, C. Quintana, V.M. Nagulapati, B. Brigljevic, H. Lim, Integrated machine learning/FT-IR framework for efficient solvent composition analysis in carbon capture, Ind. Eng. Chem. Res. 63 (39) (2024) 16847-16855. [63] F.L. Zhang, W.B. Gu, J.W. Zhang, Z.P. Zheng, Experiment on a new biphasic absorber composed of TEPA/DEEA for capturing CO2 and its phase transition mechanism, Chin. J. Chem. Eng. 81 (2025) 64-75. [64] G.C. Lu, S. Farrukh, X.F. Fan, Research progress of non-aqueous absorbents for carbon dioxide capture with low energy consumption: a review, Fuel 391 (2025) 134740. [65] G.Y. Zhang, J.S. Liu, J. Qian, X.Z. Zhang, Z.H. Liu, Review of research progress and stability studies of amine-based biphasic absorbents for CO2 capture, J. Ind. Eng. Chem. 134 (2024) 28-50. |
| [1] | Poku Gyasi, Jiandong Wang, Mengyao Wei, Hao Jing. Establishment of normal operating zone models by boundary points for CSTR-DC-recycle chemical processes [J]. Chinese Journal of Chemical Engineering, 2025, 85(9): 140-157. |
| [2] | Qin Liu, Yan Wang, Zhi Guo, Siyuan Wu, Wancheng Li, Chuanrun Li, Bo Wu. Controllable prepared PDMS/SiO2/PVDF membrane for the separation of gaseous peppermint aromatic water [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 11-23. |
| [3] | Xin Zhou, Ce Liu, Zhibo Zhang, Xinrui Song, Haiyan Luo, Weitao Zhang, Lianying Wu, Hui Zhao, Yibin Liu, Xiaobo Chen, Hao Yan, Chaohe Yang. Hybrid modelling incorporating reaction and mechanistic data for accelerating the development of isooctanol oxidation [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 166-183. |
| [4] | Kai Huang, Chunlei Pei, Shuanghe Meng, Wuqiang Yang, Hua Li, Mao Ye, Jinlong Gong. Effects of noise on fluidized bed characteristics measurements by electrical capacitance tomography [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 219-233. |
| [5] | Cheng Guo, Lei Zeng, Yijun Guo, Bo Dai, Nina Ge, Wenhao Yan, Xiao Liu, Xiaowei Zhang. Microstructural characteristics evolution and permeability simulation on needle-punched short-cut fiber reinforced silicon phenolic resin under high-temperature pyrolysis [J]. Chinese Journal of Chemical Engineering, 2025, 88(12): 96-107. |
| [6] | Zechen Zhang, Tanzila Anjum, Yinxiang Wang, Yucen Meng, Tianheng Qin, Ye Shui Zhang, Yutao Zhang, Aimin Li, Guozhao Ji. Hydrogen production from biomass waste gasification under the enhancement of catalyst-sorbent hybrid functional material synthesized from steel slag [J]. Chinese Journal of Chemical Engineering, 2025, 88(12): 108-123. |
| [7] | Songtao Zheng, Yao Jiang, Shaojun Jia, Yan Wu, Peng Cui. Effect of the presence of trace sulfur dioxide on piperazine-based amine absorbents for carbon dioxide capture [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 34-41. |
| [8] | Kangrui Nie, Ruize Shang, Fuming Miao, Liuxiang Wang, Youzhi Liu, Weizhou Jiao. An integrated technology for the absorption and utilization of CO2 in alkanolamine solution for the preparation of BaCO3 in a high-gravity environment [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 117-125. |
| [9] | Kaixuan Gao, Xiwei Ke, Bingjun Du, Zhenchuan Wang, Yan Jin, Zhong Huang, Yanhong Li, Xuemin Liu. Simulation of gas-solid flow characteristics of the circulating fluidized bed boiler under pure-oxygen combustion conditions [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 9-19. |
| [10] | Kun Li, Han Tang, Shuangshuang Li, Zixuan Huang, Bei Liu, Chun Deng, Changyu Sun, Guangjin Chen. Highly efficient CO2 capture using 2-methylimidazole aqueous solution on laboratory and pilot-scale [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 148-156. |
| [11] | Feifan Yang, Yuanhang Jin, Jiangying Liu, Haipeng Zhu, Rong Xu, Fenjuan Xiangli, Gongping Liu, Wanqin Jin. Regulation of interlayer channels of graphene oxide nanosheets in ultra-thin Pebax mixed-matrix membranes for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 257-267. |
| [12] | Changfeng Lu, Donghai Sheng, Lin Zhang, Beibei Feng, Yuan Li. Investigation on the synthesis conditions of poly(4-methyl-1-pentene) hollow fiber membrane with high gas permeability and strong tensile strength [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 25-34. |
| [13] | Chunjin Zhang, Xue Yao, Linlin Chen, Hua Tang, Siming Chen. Efficient and eco-friendly carbon dioxide capture with metal phosphate catalysts in monoethanolamine solutions [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 121-130. |
| [14] | Haixin Sun, Jianlei Qi, Jianfei Sun, Lin Li, Kunpeng Yu, Jintao Wu, Jianzhong Yin. Solubility of iron(III) and nickel(II) acetylacetonates in supercritical carbon dioxide [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 29-34. |
| [15] | Yinji Wan, Dekai Kong, Feng Xiong, Tianjie Qiu, Song Gao, Qiuning Zhang, Yefan Miao, Mulin Qin, Shengqiang Wu, Yonggang Wang, Ruiqin Zhong, Ruqiang Zou. Enhancing hydrophobicity via core–shell metal organic frameworks for high-humidity flue gas CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 82-89. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
