[1] L.J. Bai, S.J. Lu, Q.Z. Zhao, L.L. Chen, Y.J. Jiang, C.X. Jia, S.M. Chen, Low-energy-consuming CO2 capture by liquid-liquid biphasic absorbents of EMEA/DEEA/PX, Chem. Eng. J. 450 (2022) 138490. [2] P. Friedlingstein, Global carbon budget 2022, Earth Syst. Sci. Data 14 (11) (2022) 4811-4900. [3] I.A. Digdaya, I. Sullivan, M. Lin, L.H. Han, W.H. Cheng, H.A. Atwater, C.X. Xiang, A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater, Nat. Commun. 11 (2020) 4412. [4] P. Friedlingstein, Global carbon budget 2023, Earth Syst. Sci. Data 15 (12) (2023) 5301-5369. [5] Q.H. Lai, S. Toan, M.A. Assiri, H.G. Cheng, A.G. Russell, H. Adidharma, M. Radosz, M.H. Fan, Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture, Nat. Commun. 9 (1) (2018) 2672. [6] C.H. Cheng, K.K. Li, H. Yu, K.Q. Jiang, J. Chen, P. Feron, Amine-based post-combustion CO2 capture mediated by metal ions: advancement of CO2 desorption using copper ions, Appl. Energy 211 (2018) 1030-1038. [7] Y. Wang, L. Zhao, A. Otto, M. Robinius, D. Stolten, A review of post-combustion CO2 capture technologies from coal-fired power plants, Energy Proc. 114 (2017) 650-665. [8] F.S. Yang, X.H. Jin, J.W. Fang, W.W. Tu, Y. Yang, C.H. Cui, W.D. Zhang, Development of CO2 phase change absorbents by means of the cosolvent effect, Green Chem. 20 (10) (2018) 2328-2336. [9] R.R. Wanderley, D.D.D. Pinto, H.K. Knuutila, Investigating opportunities for water-lean solvents in CO2 capture: VLE and heat of absorption in water-lean solvents containing MEA, Sep. Purif. Technol. 231 (2020) 115883. [10] C.H. Wang, K.Q. Jiang, T.W. Jones, S.H. Yang, H. Yu, P. Feron, K.K. Li, Electrowinning-coupled CO2 capture with energy-efficient absorbent regeneration: towards practical application, Chem. Eng. J. 427 (2022) 131981. [11] E.S. Rubin, J.E. Davison, H.J. Herzog, The cost of CO2 capture and storage, Int. J. Greenh. Gas Contr. 40 (2015) 378-400. [12] K.K. Li, W. Leigh, P. Feron, H. Yu, M. Tade, Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements, Appl. Energy 165 (2016) 648-659. [13] Z.E. Zhang, T.N. Borhani, A.G. Olabi, Status and perspective of CO2 absorption process, Energy 205 (2020) 118057. [14] Y.N. Yu, Y. Shen, K. Wang, J.K. Zhao, J.X. Ye, L.D. Wang, S.H. Zhang, A facile synthesized robust catalyst for efficient regeneration of biphasic solvent in CO2 capture: characterization, performance, and mechanism, Sep. Purif. Technol. 319 (2023) 124057. [15] U.H. Bhatti, D. Sivanesan, D.H. Lim, S.C. Nam, S. Park, I.H. Baek, Metal oxide catalyst-aided solvent regeneration: a promising method to economize post-combustion CO2 capture process, J. Taiwan Inst. Chem. Eng. 93 (2018) 150-157. [16] H.C. Shi, A. Naami, R. Idem, P. Tontiwachwuthikul, Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents, Int. J. Greenh. Gas Contr. 26 (2014) 39-50. [17] X.Y. Hu, Q. Yu, Y.Y. Cui, J.T. Huang, E. Shiko, Y.F. Zhou, Z.G. Zeng, Y. Liu, R. Zhang, Toward solvent development for industrial CO2 capture by optimizing the catalyst-amine formulation for lower energy consumption in the solvent regeneration process, Energy Fuels 33 (11) (2019) 11507-11515. [18] R. Javad Kalbasi, S. Mansouri, O. Mazaheri, In situ polymerization of poly(vinylimidazole) into the pores of hierarchical MFI zeolite as an acid-base bifunctional catalyst for one-pot C-C bond cascade reactions, Res. Chem. Intermed. 44 (5) (2018) 3279-3291. [19] L.J. Li, Y.Y. Liu, K.J. Wu, C.J. Liu, S.Y. Tang, H.R. Yue, H.F. Lu, B. Liang, Catalytic solvent regeneration of a CO2-loaded MEA solution using an acidic catalyst from industrial rough metatitanic acid, Greenh. Gases Sci. Technol. 10 (2) (2020) 449-460. [20] Z. Ali Saleh Bairq, H.X. Gao, Y.F. Huang, H.Y. Zhang, Z.W. Liang, Enhancing CO2 desorption performance in rich MEA solution by addition of SO4 2-/ZrO2/SiO2 bifunctional catalyst, Appl. Energy 252 (2019) 113440. [21] W. Srisang, F. Pouryousefi, P.A. Osei, B. Decardi-Nelson, A. Akachuku, P. Tontiwachwuthikul, R. Idem, Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture, Chem. Eng. Sci. 170 (2017) 48-57. [22] T. Wang, W. Yu, F. Liu, M.X. Fang, M. Farooq, Z.Y. Luo, Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions, Ind. Eng. Chem. Res. 55 (28) (2016) 7830-7838. [23] M.W. Schreiber, C.P. Plaisance, M. Baumgartl, K. Reuter, A. Jentys, R. Bermejo-Deval, J.A. Lercher, Lewis-Broensted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes, J. Am. Chem. Soc. 140 (14) (2018) 4849-4859. [24] Z.W. Yu, S.H. Li, Q. Wang, A.M. Zheng, X. Jun, L. Chen, F. Deng, Broensted/lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy, J. Phys. Chem. C 115 (45) (2011) 22320-22327. [25] H. Zhao, Z.Y. Yuan, Insights into transition metal phosphate materials for efficient electrocatalysis, ChemCatChem 12 (15) (2020) 3797-3810. [26] X.R. Li, X. Xiao, Q. Li, J.L. Wei, H.G. Xue, H. Pang, Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors, Inorg. Chem. Front. 5 (1) (2018) 11-28. [27] C. Li, X.H. Mei, F.L.Y. Lam, X.J. Hu, Amorphous iron and cobalt based phosphate nanosheets supported on nickel foam as superior catalysts for hydrogen evolution reaction, ACS Appl. Energy Mater. 1 (12) (2018) 6764-6768. [28] L.Q. Gui, X.Y. Miao, C.J. Lei, K.L. Wang, W. Zhou, B.B. He, Q. Wang, L. Zhao, Co3+-rich Na1.95 CoP2 O7 phosphates as efficient bifunctional catalysts for oxygen evolution and reduction reactions in alkaline solution, Chemistry 25 (47) (2019) 11007-11014. [29] R. Duan, Y.J. Li, S. Wang, J. Gong, Y.G. Tong, W.H. Qi, Fast and deep reconstruction of coprecipitated Fe phosphates on nickel foams for an alkaline oxygen evolution reaction, J. Phys. Chem. Lett. 13 (6) (2022) 1446-1452. [30] S. Liu, I. Zaharieva, L. D'Amario, S. Mebs, P. Kubella, F. Yang, P. Beyer, M. Haumann, H. Dau, Electrocatalytic water oxidation at neutral pH-deciphering the rate constraints for an amorphous cobalt-phosphate catalyst system, Adv. Energy Mater. 12 (46) (2022) 2202914. [31] D. Chinnadurai, M. Nallal, H.J. Kim, O.L. Li, K.H. Park, K. Prabakar, Mn3+ active surface site enriched manganese phosphate nano-polyhedrons for enhanced bifunctional oxygen electrocatalyst, ChemCatChem 12 (8) (2020) 2348-2355. [32] R. Gond, K. Sada, B. Senthilkumar, P. Barpanda, Bifunctional electrocatalytic behavior of sodium cobalt phosphates in alkaline solution, Chemelectrochem 5 (1) (2018) 153-158. [33] R. Zhang, G. van Straaten, V. di Palma, G. Zafeiropoulos, M.C.M. van de Sanden, W.M.M. Kessels, M.N. Tsampas, M. Creatore, Electrochemical activation of atomic layer-deposited cobalt phosphate electrocatalysts for water oxidation, ACS Catal. 11 (5) (2021) 2774-2785. [34] L.L. Chen, S.J. Lu, L. Zhang, C.J. Zhang, L. Liu, G.J. Kang, H. Tang, S.M. Chen, Solid waste of fly ash toward energy-efficient CO2 capture, ACS Sustain. Chem. Eng. 11 (22) (2023) 8281-8293. [35] I. Raphael,H. Shi,G. Don,T. Paitoon, Catalytic method and apparatus for separating a gaseous component from an incoming gas stream, CA Pat.,EP11761861(2011). [36] U.H. Bhatti, S. Nam, S. Park, I.H. Baek, Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration, ACS Sustain. Chem. Eng. 6 (9) (2018) 12079-12087. [37] X.W. Zhang, X. Zhang, H.L. Liu, W.S. Li, M. Xiao, H.X. Gao, Z.W. Liang, Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts, Appl. Energy 202 (2017) 673-684. [38] H.L. Liu, X. Zhang, H.X. Gao, Z.W. Liang, R. Idem, P. Tontiwachwuthikul, Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst, Ind. Eng. Chem. Res. 56 (27) (2017) 7656-7664. [39] N. Prasongthum, P. Natewong, P. Reubroycharoen, R. Idem, Solvent regeneration of a CO2-loaded BEA-AMP bi-blend amine solvent with the aid of a solid Broensted Ce(SO4)2/ZrO2 superacid catalyst, Energy Fuels 33 (2) (2019) 1334-1343. [40] X.W. Zhang, Y.F. Huang, H.X. Gao, X. Luo, Z.W. Liang, P. Tontiwachwuthikul, Zeolite catalyst-aided tri-solvent blend amine regeneration: an alternative pathway to reduce the energy consumption in amine-based CO2 capture process, Appl. Energy 240 (2019) 827-841. [41] M.K. Wong, M.A. Bustam, A.M. Shariff, Chemical speciation of CO2 absorption in aqueous monoethanolamine investigated by in situ Raman spectroscopy, Int. J. Greenh. Gas Contr. 39 (2015) 139-147. [42] M. Caplow, Kinetics of carbamate formation and breakdown, J. Am. Chem. Soc. 90 (24) (1968) 6795-6803. [43] P.V. Danckwerts, The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34 (4) (1979) 443-446. |