[1] L. Zhao, Y. Zhao, S. Wang, H. Yue, B. Wang, J. Lv, X. Ma, Hydrogenation of dimethyl oxalate using extruded Cu/SiO2 catalysts: Mechanical strength and catalytic performance, Ind. Eng. Chem. Res. 51 (43) (2012) 13935-13943.[2] Z. Meng, J. Sun, J. Wang, J. Zhang, Z. Fu, W. Cheng, X. Zhang, An efficient and stable ionic liquid system for synthesis of ethylene glycol via hydrolysis of ethylene carbonate, Chin. J. Chem. Eng. 18 (6) (2010) 962-966.[3] H. Zhou, S. Zhang, F. Gao, X. Bai, Z. Sha, Solubility of ammonia in ethylene glycol between 303 K and 323 K under low pressure from 0.030 to 0.101 MPa, Chin. J. Chem. Eng. 22 (2) (2014) 181-186.[4] X.Ma, H. Chi, H. Yue, Y. Zhao, Y. Xu, J. Lv, S.Wang, J. Gong, Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts, AIChE J. 59 (7) (2013) 2530-2539.[5] S.Y. Peng, Z.N. Xu, Q.S. Chen, Y.M. Chen, J. Sun, Z.Q. Wang, M.S. Wang, G.C. Guo, An ultra-low Pd loading nanocatalyst with high activity and stability for CO oxidative coupling to dimethyl oxalate, Chem. Commun. 49 (51) (2013) 5718-5720.[6] Z.N. Xu, J. Sun, C.S. Lin, X.M. Jiang, Q.S. Chen, S.Y. Peng, M.S. Wang, G.C. Guo, Highperformance and long-lived Pd nanocatalyst directed by shape effect for CO oxidative coupling to dimethyl oxalate, ACS Catal. 3 (2) (2013) 118-122.[7] G.L. Zhuo, X.Z. Jiang, An attractive synthetic approach tomethyl formate frommethanol via methyl nitrite, Catal. Lett. 80 (3-4) (2002) 171-174.[8] G.L. Zhuo, X.Z. Jiang, Catalytic decomposition of methyl nitrite over supported palladium catalysts in vapor phase, React. Kinet. Catal. Lett. 77 (2) (2002) 219-226.[9] J.W. Peck, D.E. Beck, D.I. Mahon, Methyl nitrite adsorption as a novel route to the surface methoxy intermediate, J. Phys. Chem. B 102 (18) (1998) 3321-3323.[10] J.W. Peck, D.I.Mahon, D.E. Beck, B. Bansenaur, B.E. Koel, TPD, HREELS and UPS study of the adsorption and reaction of methyl nitrite (CH3ONO) on Pt(111), Surf. Sci. 410 (2-3) (1998) 214-227.[11] Y. He, W.A. Sanders, M.C. Lin, Thermal decomposition of methyl nitrite: Kinetic modeling of detailed product measurements by gas-liquid chromatography and Fourier-transform infrared spectroscopy, J. Phys. Chem. 92 (19) (1988) 5474-5481.[12] Y. Ji, Study of Catalyst, Mechanism, and Intrinsic Kinetics of CO Catalytic Coupling to Dimethyl Oxalate (DMO)(Ph. D thesis) East China University of Science and Technology (ECUST), Shanghai, 2010.[13] J.R.B. Gomes, F. Illas, The adsorption of methyl nitrite on the Au(111) surface, Catal. Lett. 71 (1-2) (2001) 31-35.[14] Z.X. Chen, K.M. Neyman, K.H. Lim, N. Rösch, CH3O decomposition on PdZn(111), Pd(111), and Cu(111). A theoretical study, Langmuir 20 (19) (2004) 8068-8077.[15] Z.X. Chen, K.H. Lim, K.M. Neyman, N. Rösch, Effect of steps on the decomposition of CH3O at PdZn alloy surfaces, J. Phys. Chem. B 109 (10) (2005) 4568-4574.[16] R. Jiang, W. Guo, M. Li, D. Fu, H. Shan, Density functional investigation of methanol dehydrogenation on Pd(111), J. Phys. Chem. C 113 (10) (2009) 4188-4197.[17] R. Jiang, W. Guo, M. Li, X. Lu, J. Yuan, H. Shan, Dehydrogenation of methanol on Pd(100): comparison with the results of Pd(111), PCCP 12 (28) (2010) 7794-7803.[18] K.H. Lim, Z.X. Chen, K.M. Neyman, N. Rösch, Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces, J. Phys. Chem. B 110 (30) (2006) 14890-14897.[19] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996) 15-50.[20] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (16) (1996) 11169-11186.[21] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1) (1993) 558-561.[22] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (20) (1994) 14251-14269.[23] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (24) (1994) 17953-17978.[24] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B 59 (3) (1999) 1758-1775.[25] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865-3868.[26] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12) (1976) 5188-5192.[27] M.Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40 (6) (1989) 3616-3621.[28] D.R. Lide, CRC Handbook of Chemistry and Physics, 79th ed. CRC Press, Boca Raton, Florida, 1998.[29] D. Loffreda, D. Simon, P. Sautet, Dependence of stretching frequency on surface coverage and adsorbate-adsorbate interactions: a density-functional theory approach of CO on Pd (111), Surf. Sci. 425 (1) (1999) 68-80.[30] Z.H. Zeng, J.L.F. Da Silva, W.X. Li, Density functional theory and ab initio molecular dynamics study of NO adsorption on Pd(111) and Pt(111) surfaces, Phys. Rev. B 81 (8) (2010).[31] C. Fan, W.D. Xiao, Origin of site preference of CO and NO adsorption on Pd(111) at different coverages: a density functional theory study, Comput. Theor. Chem. 1004 (2013) 22-30.[32] G. Henkelman, H. Jonsson, A dimermethod for finding saddle points on high dimensional potential surfaces using only first derivatives, J. Chem. Phys. 111 (15) (1999) 7010-7022.[33] D. Sheppard, R. Terrell, G. Henkelman, Optimization methods for finding minimum energy paths, J. Chem. Phys. 128 (13) (2008) 134106.[34] A. Fernández-Ramos, E. Martínez-Núñez,M.A. Ríos, J. Rodríguez-Otero, S.A. Vázquez, C.M. Estévez, Direct dynamics study of the dissociation and elimination channels in the thermal decomposition of methyl nitrite, J. Am. Chem. Soc. 120 (30) (1998) 7594-7601.[35] J.L. Davis, M.A. Barteau, Polymerization and decarbonylation reactions of aldehydes on the Pd(111) surface, J. Am. Chem. Soc. 111 (5) (1989) 1782-1792.[36] Z.P. Liu, S.J. Jenkins, D.A. King, Car exhaust catalysis from first principles: Selective NO reduction under excess O2 conditions on Ir, J. Am. Chem. Soc. 126 (34) (2004) 10746-10756. |