[1] S.I. Mussatto, G. Dragone, P.M.R. Guimarães, J.P.A. Silva, L.M. Carneiro, I.C. Roberto, A. Vicente, L. Domingues, J.A. Teixeira, Technological trends, global market, and challenges of bio-ethanol production, Biotechnol. Adv. 28(6) (2010) 817-830. [2] Renewable Fuels Association. Ethanol industry outlook 2016, http://www.ethanolrfa.org/pages/annual-industry-outlook, 2016. [3] J. Hill, E. Nelson, D. Tilman, S. Polasky, D. Tiffany, Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels, Proc. Natl. Acad. Sci. U. S. A. 103(30) (2006) 11206-11210. [4] R. Leng, C. Wang, C. Zhang, D. Dai, G. Pu, Life cycle inventory and energy analysis of cassava-based fuel ethanol in China, J. Clean. Prod. 16(3) (2008) 374-384. [5] O.J. Sanchez, C.A. Cardona, Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour. Technol. 99(13) (2008) 5270-5295. [6] H.J. Jördening, J. Winter, Environmental Biotechnology:Concepts and Applications, John Wiley & Sons, Germany, 2005. [7] J.S. Kim, B.G. Kim, C.H. Lee, S.W. Kim, H.S. Jee, J.H. Koh, A.G. Fane, Development of clean technology in alcohol fermentation industry, J. Clean. Prod. 5(4) (1997) 263-267. [8] C.M. Zhang, Z.G. Mao, X. Wang, J.H. Zhang, F.B. Sun, L. Tang, H.J. Zhang, Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated fermentation process coupled with both ethanol and methane fermentations, Bioprocess Biosyst. Eng. 33(9) (2010) 1067-1075. [9] Q.H. Zhang, X. Lu, L. Tang, Z.G. Mao, J.H. Zhang, H.J. Zhang, F.B. Sun, A novel full recycling process through two-stage anaerobic treatment of distillery wastewater for bioethanol production from cassava, J. Hazard. Mater. 179(1-3) (2010) 635-641. [10] K. Wang, J.H. Zhang, P. Liu, Z.G. Mao, Suitability of anaerobic digestion effluent as process water for corn fuel ethanol fermentation, Water Sci. Technol. 69(9) (2014) 1894-1899. [11] M. Lay-Son, C. Drakides, New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste:pH as key factor, Water Res. 42(3) (2008) 774-780. [12] S.K. Marttinen, R.H. Kettunen, K.M. Sormunen, R.M. Soimasuo, J.A. Rintala, Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates, Chemosphere 46(6) (2002) 851-858. [13] T. Zhang, L. Ding, H. Ren, X. Xiong, Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology, Water Res. 43(20) (2009) 5209-5215. [14] K. Wang, J.H. Zhang, L. Tang, H.J. Zhang, G.Y. Zhang, X.Z. Yang, P. Liu, Z.G. Mao, Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol, Bioresour. Technol. 148(8) (2013) 453-460. [15] A. Eaton, L. Clesceri, A. Greenberg, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, New York, 1995. [16] R.E. Speece, Anaerobic Biotechnology for Industrial Wastewaters, Vanderbilt University, Archae Press, Tennessee, 1996. [17] D.A. Abbott, W.M. Ingledew, Buffering capacity of whole corn mash alters concentrations of organic acids required to inhibit growth of Saccharomyces cerevisiae and ethanol production, Biotechnol. Lett. 26(16) (2004) 1313-1316. [18] M.J. Taherzadeh, C. Niklasson, G. Lidén, Acetic acid-Friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chem. Eng. J. 52(15) (1997) 2653-2659. [19] K.C. Thomas, S.H. Hynes, W.M. Ingledew, Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids, Appl. Environ. Microbiol. 68(4) (2002) 1616-1623. [20] C.M. Zhang, L. Jiang, Z.G. Mao, J.H. Zhang, L. Tang, Effects of propionic acid and pH on ethanol fermentation by Saccharomyces cerevisiae in cassava mash, Appl. Biochem. Biotechnol. 165(3-4) (2011) 883-891. [21] S. Sung, H. Santha, Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes, Water Res. 37(7) (2003) 1628-1636. [22] E. Albers, C. Larsson, G. Lidén, C. Niklasson, L. Gustafsson, Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation, Appl. Environ. Microbiol. 62(9) (1996) 3187-3195. [23] B. Hickey, M. Motylewski, Sustainable alternatives for whole stillage management, Fuel Ethanol Workshop, St. Louis, 2007. [24] W. Białas, D. Szymanowska, W. Grajek, Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling, Bioresour. Technol. 101(9) (2010) 3126-3131. [25] D. Szymanowska-Powałowska, G. Lewandowicz, P. Kubiak, W. Błaszczak, Stability of the process of simultaneous saccharification and fermentation of corn flour. The effect of structural changes of starch by stillage recycling and scaling up of the process, Fuel 119(119) (2014) 328-334. [26] J.S. Wall, R.J. Bothast, A.A. Lagoda, K.R. Sexson, Y.V. Wu, Effect of recycling distillers' solubles on alcohol and feed production from corn fermentation, J. Agric. Food Chem. 31(4) (1983) 770-775. [27] A. Bhattacharyya, J. Saha, S. Haldar, A. Bhowmic, U.K. Mukhopadhyay, J. Mukherjee, Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts, Extremophiles 18(2) (2014) 463-470. [28] A.P. Djukić-Vuković, L.V. Mojović, B.M. Jokić, S.B. Nikolić, J.D. Pejin, Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite, Bioresour. Technol. 135(2) (2013) 454-458. [29] M.H. Selim, A.M. Elshafei, A.I. El-Diwany, Production of single cell protein from yeast strains grown in Egyptian vinasse, Bioresour. Technol. 36(2) (1991) 157-160. [30] T.P. West, B. Strohfus, Pullulan production by Aureobasidium pullulans grown on ethanol stillage as a nitrogen source, Microbios 88(354) (1995) 7-18. [31] F.C. Yang, I. Lin, Production of acid protease using thin stillage from a rice-spirit distillery by Aspergillus niger, Enzym. Microb. Technol. 23(6) (1998) 397-402. [32] T. Gao, X. Li, Using thermophilic anaerobic digestate effluent to replace freshwater for bioethanol production, Bioresour. Technol. 102(2) (2011) 2126-2129. |