›› 2017, Vol. 25 ›› Issue (4): 523-532.DOI: 10.1016/j.cjche.2016.10.021
• Materials and Product Engineering • Previous Articles Next Articles
Danilo Vuono1, Enrico Catizzone1, Alfredo Aloise1, Alfonso Policicchio2, Raffaele G. Agostino2, Massimo Migliori1, Girolamo Giordano1
Received:
2016-07-25
Revised:
2016-10-28
Online:
2017-06-03
Published:
2017-04-28
Supported by:
Danilo Vuono1, Enrico Catizzone1, Alfredo Aloise1, Alfonso Policicchio2, Raffaele G. Agostino2, Massimo Migliori1, Girolamo Giordano1
通讯作者:
Massimo Migliori
基金资助:
Danilo Vuono, Enrico Catizzone, Alfredo Aloise, Alfonso Policicchio, Raffaele G. Agostino, Massimo Migliori, Girolamo Giordano. Modelling of adsorption of textile dyes over multi-walled carbon nanotubes: Equilibrium and kinetic[J]. , 2017, 25(4): 523-532.
Danilo Vuono, Enrico Catizzone, Alfredo Aloise, Alfonso Policicchio, Raffaele G. Agostino, Massimo Migliori, Girolamo Giordano. Modelling of adsorption of textile dyes over multi-walled carbon nanotubes: Equilibrium and kinetic[J]. , 2017, 25(4): 523-532.
[1] Water for People Water for Life, United Nations World Development Report, UNESCO, 2003. [2] Y. Cai, W. Yue, L. Xu, Z. Yang, Q. Rong, Sustainable urban water resources management considering life-cycle environmental impacts of water utilization under uncertainty, Resour. Conserv. Recycl. 108(2016) 21-40. [3] V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agawal, Chemical treatment technologies for waste-water recycling-An overview, RSC Adv. 2(2012) 6380-6388. [4] J. de Koning, D. Bixio, A. Karabelas, M. Salgot, A. Schäfer, Characterisation and assessment of water treatment technologies for reuse, Desalination 1(2008) 92-104. [5] I. Ali, New generation adsorbents for water treatment, Chem. Rev. 112(2012) 5073-5091. [6] T. Yao, S. Guo, C. Zeng, C. Wang, L. Zhang, Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres, J. Hazard. Mater. 292(2015) 90-97. [7] R. Pourata, A.R. Khataee, S. Aber, N. Daneshvar, Removal of the herbicide Bentazon from contaminated water in the presence of synthesized nanocrystallite TiO2 powders under irradiation of UV-C light, Desalination 249(2009) 301-307. [8] E.C. Lima, B. Royer, J.C.P. Vaghetti, N.M. Simon, B.M. da Cunha, F.A. Pavan, E.V. Benvenutti, R. Cataluña-Veses, C. Airoldi, Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution:Kinetics and equilibrium study, J. Hazard. Mater. 155(2008) 536-550. [9] A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeterior. Biodegrad. 59(2007) 73-84. [10] E. Forgas, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters:A review, Environ. Int. 30(2004) 953-971. [11] V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal-A review, J. Environ. Manag. 90(2009) 2313-2342. [12] P.C. Vandevivere, R. Bianchi, W. Verstraete, Review:Treatment and reuse of wastewater from textile wet-processing industry:review of emerging technologies, J. Chem. Technol. Biotechnol. 72(1998) 289-302. [13] L. Ai, C. Zhang, L. Li, J. Jiang, Iron terephthalate metal-organic framework:Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation, Appl. Catal. B. 149(2014) 191-200. [14] K. Turhan, I. Durukan, S.A. Ozturkcan, Z. Turgut, Decolorization of textile basic dye in aqueous solution by ozone, Dyes Pigments 92(2012) 897-901. [15] D. Daâssi, T. Mechichi, M. Nasri, S. Rodriguez-Couto, Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi, J. Environ. Manag. 129(2013) 324-332. [16] J. Altmann, A.S. Ruhl, F. Zietzschmann, M. Jekel, Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment, Water Res. 55(2014) 185-193. [17] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent:A critical review on current treatment technologies with a proposed alternative, Bioresour. Technol. 77(2001) 247-255. [18] T.A. Saleh, A.M. Muhammad, B. Tawabini, S.A. Ali, Aminomethylphosphonate chelating ligand and octadecyl alkyl chain in a resin for simultaneous removal of Co(Ⅱ) ions and organic contaminants, J. Chem. Eng. Data 61(9) (2016) 3377-3385. [19] T.A. Saleh, A.A. Al-Saadi, Surface characterization and sorption efficacy of tireobtained carbon:Experimental and semiempirical study of rhodamine B adsorption, Surf. Interface Anal. 47(2015) 785-792. [20] Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control:Potential applications and implications, Water Res. 42(2008) 4591-4602. [21] I.M. Jauris, S.B. Fagan, M.A. Adebayo, F.M. Machado, Adsorption of acridine orange and methylene blue synthetic dyes and anthracene on single wall carbon nanotubes:A first principle approach, Comput. Theor. Chem. 1076(2016) 42-50. [22] F.M. Machado, C.P. Bergmann, E.C. Lima, B. Royer, F.E. de Souza, I.M. Jauris, T. Calvete, S.B. Fagan, Adsorption of reactive blue 4 dye from water solutions by carbon nanotubes:Experiment and theory, Phys. Chem. Chem. Phys. 14(2012) 11139-11153. [23] M. Migliori, D. Gabriele, R. Di Sanzo, B. De Cindio, S. Correra, Viscosity of multicomponent solutions of simple and complex sugars in water, J. Chem. Eng. Data 52(4) (2007) 1347-1353. [24] S. Iijima, Helical microtubules of graphitic carbon, Nature 354(1991) 56-58. [25] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363(1993) 603-605. [26] D.S. Bethune, C.H. Klang, M.S. De Vries, Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363(2003) 605-607. [27] Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide:Biofunctionalization and applications in biotechnology, Trends Biotechnol. 29(2011) 205-212. [28] Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, L. Xia, Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes, Chem. Eng. Res. Des. 91(2013) 361-368. [29] T. Kuila, S.D. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee, Recent advances in graphene-based biosensors, Biosens. Bioelectron. 26(2011) 4637-4648. [30] A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, J.B. Nagy, Synthesis methods of carbon nanotubes and related materials, Materials 3(2010) 3092-3140. [31] J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications, Acta Biomater. 9(2013) 9243-9257. [32] B.S. Wong, S.L. Yoong, A. Jagusiak, T. Panczyk, H.K. Ho, W.H. Ang, G. Pastorin, Carbon nanotubes for delivery of small molecule drugs, Adv. Drug Deliv. Rev. 65(2013) 1964-2015. [33] L.V. Radushkevich, V.M. Lukyanovich, O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zurn. Fisic. Chim. 26(1952) 88-95. [34] A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth 32(1976) 335-349. [35] K.B.K. Teo, C. Singh, M. Chhowalla, W.I. Milne, in:H.S. Nalwa (Ed.), Catalytic synthesis of carbon nanotubes and nanofibers. Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publisher, Valencia, CA, USA 2003, pp. 665-668. [36] M.J. Yacamàn, M.M. Yoshida, L. Rendon, J.G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett. 6(1993) 202-204. [37] J.W. Seo, A. Magrez, M. Milas, K. Lee, V. Lukovac, L. Forro, Catalytically grown carbon nanotubes:From synthesis to toxicity, J. Phys. D. Appl. Phys. 40(2007) 109-120. [38] A.G. Nasibulin, D.P. Brown, P. Queipo, D. Gozalez, H. Jiang, E.Z. Kanppinen, An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide, Chem. Phys. Lett. 417(2006) 179-184. [39] P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A Gen. 253(2003) 337-358. [40] Q.H. Yang, P.X. Hou, S. Bai, M.Z. Wang, H.M. Cheng, Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett. 345(2001) 18-24. [41] V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water:A review, Sci. Total Environ. 408(2009) 1-13. [42] F.M. Machado, C.P. Bergmann, T.H.M. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon, J. Hazard. Mater. 192(2011) 1122-1131. [43] S.B. Kayiran, D.F. Lamari, D. Levesque, Adsorption properties and structural characterization of activated and nano-carbons, J. Phys. Chem. B 108(2004) 15211-15215. [44] T.A. Saleh, The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4, Appl. Surf. Sci. 257(2011) 7746-7751. [45] J.G. Yu, X.H. Zhao, H. Yang, X.H. Chen, Q. Yang, L.Y. Yu, J.H. Jiang, X.Q. Chen, Aqueous adsorption and removal of organic contaminants by carbon nanotubes, Sci. Total Environ. 482-483(2014) 241-251. [46] M.H. Dehghani, M. Mostofi, M. Alimohammadi, G. McKay, K. Yetilmezsoy, A.B. Albadarin, B. Heibati, M. AlGhouti, N.M. Mubarak, J.N. Sahu, High-performance removal of toxic phenol by single-walled and multi-walled carbon nanotubes:Kinetics, adsorption, mechanism and optimization studies, J. Ind. Eng. Chem. 35(2016) 63-74. [47] G.S. Simate, The treatment of brewery wastewater for reuse by integration of coagulation/flocculation and sedimentation with carbon nanotubes ‘sandwiched’ in a granular filter bed, J. Ind. Eng. Chem. 21(2015) 1277-1285. [48] X. Sun, H. Ou, C. Miao, L. Chen, Removal of Sudan dyes from aqueous solution by magnetic carbon nanotubes:Equilibrium, kinetic and thermodynamic studies, J. Ind. Eng. Chem. 22(2015) 373-377. [49] F. Yu, J. Ma, Y. Wu, Adsorption of toluene, ethylbenzene and m-xylene on multiwalled carbon nanotubes with different oxygen contents from aqueous solutions, J. Hazard. Mater. 192(2011) 1370-1379. [50] H. Vijwani, M.N. Nadagouda, V. Namboodiri, S.M. Mukhopadhyay, Hierarchical hybrid carbon nano-structures as robust and reusable adsorbents:Kinetic studies with model dye compound, Chem. Eng. J. 268(2015) 197-207. [51] S. Chakma, V.S. Moholkar, Synthesis of bi-metallic oxides nanotubes for fast removal of dye using adsorption and sonocatalysis process, J. Ind. Eng. Chem. 37(2016) 84-89. [52] C.H. Wu, Adsorption of reactive dye onto carbon nanotubes:equilibrium, kinetics and thermodynamics, J. Hazard. Mater. 144(2007) 93-100. [53] C.Y. Kuo, C.H. Wu, J.Y. Wu, Adsorption of direct dyes from aqueous solutions by carbon nanotubes:Determination of equilibrium, kinetics and thermodynamics parameters, J. Colloid Interface Sci. 327(2008) 308-315. [54] T.A. Saleh, Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(Ⅱ):From surface properties to sorption mechanism, Desalin. Water Treat. 57(2016) 10730-10744. [55] C. Valderrama, X. Gamisans, X. de Ias Heras, A. Ferran, J.L. Cortina, Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon:Intraparticle diffusion coefficients, J. Hazard. Mater. 157(2008) 386-396. [56] T.A. Saleh, Mercury sorption by silica/carbon nanotubes and silica/activated carbon:A comparison study, J. Water Supply Res. Technol. 64(2015) 892-903. [57] T.A. Saleh, A.M. Muhammad, B. Tawabini, S.A. Ali, Aminomethylphosphonate chelating ligand and octadecyl alkyl chain in a resin for simultaneous removal of Co(Ⅱ) ions and organic contaminants, J. Chem. Eng. Data 61(2016) 3377-3385. [58] T.A. Saleh, G.I. Danmaliki, Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes, J. Taiwan Inst. Chem. Eng. 60(2016) 460-468. [59] A.K. Mishra, T. Arockiadoss, S. Ramaprabhu, Study of removal of azo dye by functionalized multi walled carbon nanotubes, Chem. Eng. J. 162(2010) 1026-1034. [60] T.A. Saleh, Isotherm, kinetic, and thermodynamic studies on Hg(Ⅱ) adsorption from aqueous solution by silica-multiwall carbon nanotubes, Environ. Sci. Pollut. Res. 22(2015) 16721-16731. [61] T.A. Saleh, V.K. Gupta, Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide, J. Colloid Interface Sci. 371(2012) 101-106. [62] Y. Yao, F. Xu, M. Chen, Z. Xu, Z. Zhu, Adsorption behavior of methylene blue on carbon nanotubes, Bioresour. Technol. 101(2010) 3040-3046. [63] S. Wang, C.W. Ng, W. Wang, Q. Li, Z. Hao, Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes, Chem. Eng. J. 197(2012) 34-40. [64] D. Zhao, W. Zhang, C. Chena, X. Wang, Adsorption of methyl orange dye onto multiwalled carbon nanotubes, Procedia Environ. Sci. 18(2013) 890-895. [65] D.T.L. Prola, F.M. Machado, C.P. Bergmann, F.E. de Souza, C.R. Gally, E.C. Lima, M.A. Adebayo, S.L.P. Dias, T. Calvete, Adsorption of direct blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon, J. Environ. Manag. 130(2013) 166-175. [66] V. Grosso, D. Vuono, M.A. Bahattab, G. Di Profio, E. Curcio, S.A. Al-Jilil, F. Alsubaie, M. Alfife, J.B. Nagy, E. Drioli, E. Fontananova, Polymeric and mixed matrix polyimide membranes, Sep. Purif. Technol. 132(2014) 684-696. [67] F.M. Machado, S.B. Fagan, I.Z. da Silva, M.J. de Andrade, Carbon nanoadsorbents, in:C.P. Bergman, F.M. Machado (Eds.), Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Springer International Eds., 2015 [68] G. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, M. Krimissa, Sorption isotherms:A review on physical bases, modelling and measurement, Appl. Geochem. 22(2007) 249-275. [69] V.K. Gupta, R. Jain, M.N. Siddiqui, T.A. Saleh, S. Agarwal, S. Malati, D. Pathak, Equilibrium and thermodynamic studies on the adsorption of the dye rhodamine-B onto mustard cake and activated carbon, J. Chem. Eng. Data 55(2010) 5225-5229. [70] M. Migliori, A. Aloise, E. Catizzone, G. Giordano, Kinetic analysis of methanol to dimethyl ether reaction over H-MFI catalyst, Ind. Eng. Chem. Res. 53(2014) 14885-14891. [71] B.H. Hameed, M.I. El-Khaiary, Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre:Equilibrium isotherms and kinetic studies, J. Hazard. Mater. 154(2008) 237-244. [72] W. Cheng, S.G. Wang, L. Lu, W.X. Gong, X.W. Liu, B.Y. Gao, H.Y. Zhang, Removal of malachite green (MG) from aqueous solutions by native and heat-treated anaerobic granular sludge, Biochem. Eng. J. 39(2008) 538-546. [73] H. Qiu, L. LV, B. Pan, Q. Zhang, W. Zhang, Q. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. 10(2009) 716-724. [74] A. Policicchio, D. Vuono, T. Rugiero, P. De Luca, J.B. Nagy, Study of MWCNTs adsorption performances in gas processes, J. CO2 Util. 10(2015) 30-39. [75] W. Chen, L. Duan, D. Zhu, Adsorption of polar and nonpolar organic chemicals to carbon nanotubes, Environ. Sci. Technol. 41(2007) 8295-8300. [76] V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adsorptive removal of dyes from aqueous solution onto carbon nanotubes:A review, Adv. Colloid Interf. Sci. 193(2013) 24-34. [77] M.S.A. Abdelbassit, K.R. Alhooshani, T.A. Saleh, Silica nanoparticles loaded on activated carbon for simultaneous removal of dichloromethane, trichloromethane, and carbon tetrachloride, Adv. Powder Technol. 27(2016) 1719-1729. [78] M. Migliori, A. Aloise, G. Giordano, Methanol to dimethylether on H-MFI catalyst:The influence of the Si/Al ratio on kinetic parameters, Catal. Today 227(2014) 138-143. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Chaoyi Yin, Jingyuan Ma, Jian Qiu, Ruifang Liu, Long Ba. Mass-producible low-cost flexible electronic fabrics for azo dye wastewater treatment by electrocoagulation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 222-230. |
[3] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 33-45. |
[4] | Yuxi Chai, Yanan Zhang, Yannan Tan, Zhiwei Li, Huangzhao Wei, Chenglin Sun, Haibo Jin, Zhao Mu, Lei Ma. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 80-88. |
[5] | Zhongwei Tan, Xingguo Xu, Yu Wan, Chengjun Kang, Zhaoqiang Zhang, Zhenxia Zhao, Fang Shen, Kungang Chai, Hongbing Ji. Efficient recovery of aromatic compounds from the wastewater of styrene monomer and propylene oxide co-production plant via hypercrosslinked aryl-rich starch-β-cyclodextrin polymeric sorbent [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 150-160. |
[6] | Zhengguo Xu, Xiaochong Wang, Shuying Sun. Performance of a synthetic resin for lithium adsorption in waste liquid of extracting aluminum from fly-ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 115-123. |
[7] | Wenjuan Bai, Dianming Chu, Yan He. Fluidization dynamic characteristics of carbon nanotube particles in a tapered fluidized bed [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 321-331. |
[8] | Qing Shu, Xinyuan Liu, Yanting Huo, Yuhui Tan, Caixia Zhang, Laixi Zou. Construction of a Brönsted-Lewis solid acid catalyst La-PW-SiO2/SWCNTs based on electron withdrawing effect of La(III) on π bond of SWCNTs for biodiesel synthesis from esterification of oleic acid and methanol [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 351-362. |
[9] | Chen Zhao, Yahan Ye, Xianfu Chen, Xiaowei Da, Minghui Qiu, Yiqun Fan. Charged modified tight ceramic ultrafiltration membranes for treatment of cationic dye wastewater [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 267-277. |
[10] | Jinyan Xi, Kang Meng, Ying Li, Meng Wang, Qiang Liao, Zidong Wei, Minhua Shao, Jianchuan Wang. Performance improvement of ultra-low Pt proton exchange membrane fuel cell by catalyst layer structure optimization [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 473-479. |
[11] | Chun Yao, Jiangwei Chang, Yiwang Ding, Chang Yu, Jieshan Qiu. Glutamic acid-assisted hydrothermal recrystallization to configure bamboo-like carbon nanotubes for improved triiodide reduction [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 159-167. |
[12] | Shaimaa T. Kadhum, Ghayda Yassen Alkindi, Talib M. Albayati. Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 19-28. |
[13] | Wenjing Li, Gilmore Wellio, Tiejun Lu, Changjun Zou, Yongliang Li. Preparation and water sorption properties of novel SiO2-LiBr microcapsules for water-retaining pavement [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 230-241. |
[14] | Alfarooq O. Basheer, Marlia M. Hanafiah, Mohammed Abdulhakim Alsaadi, Y. Al-Douri, Abbas A. Al-Raad. Synthesis and optimization of high surface area mesoporous date palm fiber-based nanostructured powder activated carbon for aluminum removal [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 472-484. |
[15] | Shanshan Wang, Liangliang Huang, Yumeng Zhang, Licheng Li, Xiaohua Lu. A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 153-163. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 215
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1640
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||