[1] D.H. Zhang, Calculation of ethylene yield for different naphtha feeds and directing evolutionary operation for cracking furnace, Petrochem. Technol. 16(6) (1987) 426-429.[2] G.H. Xiong, H. Hao, Y. Wang, S. Li, Calculation of ethylene yield by hydrocarbon pyrolysis, Chem. React. Eng. Technol. 12(2) (1996) 161-165.[3] W. Xu, J.S. Yu, Research of soft measurement for pyrolysis product yield with various model structures, Int. Instrum. Autom. 8(3) (2004) 40-42.[4] X.F. Zhuang, J.S. Yu, Modeling of depth of fragmentation and its application, Process Autom. Instrum. 25(6) (2004) 31-35.[5] S.M. Sadrameli, A.E.S. Green, Systematics and modeling representations of naphtha thermal cracking for olefin production, J. Anal. Appl. Pyrolysis 73(2) (2005) 305-313.[6] P. Kumar, D. Kunzru, Modeling of naphtha pyrolysis, Ind. Eng. Chem. Process. Des. Dev. 24(3) (1985) 774-782.[7] Y.Y. Yang, Q.Q. Zeng, S.X. Xu, W. Huang, G.Z. Zou, Y.Y. Li, Pyrolysis model of heavy feedstock, Petrochem. Technol. 15(1) (1986) 1-9.[8] G.F. Fromet, Kinetics, reactor design in the thermal cracking for olefins production, Chem. Eng. Sci. 47(9-11) (1992) 2163-2177.[9] M. Watanabe, Overall rate constant of pyrolysis of n-alkanes at a low conversion level, Ind. Eng. Chem. Res. 40(9) (2001) 2027-2036.[10] K. He, D.R. Wu, Z.F. Ma, Optimization of molecule reaction kinetics model parameter in HVGO cracking reaction, Ethylene Ind. 18(2) (2006) 15-18.[11] F.O. Rice, The thermal decomposition of organic compounds from the start point of free radicals 4, the dehydrogenation of paraffin hydrogenations and the strength of the c-c bond, Am. Chem. Soc. 55(1933) 4245-4247.[12] M. Dente, Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model, Comput. Chem. Eng. 13(1979) 61-75.[13] J.J. Dunkleman, L.F. Albright, Industrial and laboratory pyrolyses, in:L.F. Albright, B.L. Crynes (Eds.), ACS Symposium Series, 32, American Chemical Societ, 1976(Chap. 14).[14] A.G. Goossens, M.E. Dente, E. Ranzi, Improve steam cracker operation, Hydrocarb. Process. 57(9) (1978) 227-236.[15] Zdenek Belohlav, The kinetic model of thermal cracking for olefins production, Chem. Eng. Process. 42(2003) 461-473.[16] X.C. Zeng, Y.Q. Zhang, Theory and Method of Chemical Reaction Thermodynamics, Chemical Industry Press, Beijing, 2003.[17] H. Li, Z.B. Zhang, Calculation for chain initiation-termination reactions in thermal cracking:Cleavage-formation of C-H bond, Petrochem. Technol. 35(2006) 643-648.[18] H. Li, B.Z. Chen, M.B. Huang, CASPT2 investigation of ethane dissociation and methyl recombination using canonical Variational transition state theory, In. J. Chem. Kinet. 40(2008) 161-173.[19] W. Li, G.Q. Wang, Z.G. Du, Z.B. Zhang, L.J. Zhang, Research progress in methods for the estimation of rate constants in hydrocarbon pyrolysis, Ethylene Ind. 21(2009) 1-7.[20] Z.B. Zhang, H. Li, Y.G. Zhang, S.X. Xu, S. Chen, Q.Q. Zeng, Establishment and verification of free radical model for butane steam cracking, Petrochem. Technol. 36(2007) 44-48.[21] W. Li, Z.B. Zhang, C. Zhou, Y.G. Zhang, G.Q. Wang, Progress of study on free-radical mechanism model in cracking furnace tube, Ethylene Ind. 22(2) (2010) 1-6.[22] S.L. Xu, C Algorithms Commonly Used Procedures Set, Tsinghua University Press, Beijing, 1994.[23] J.E. Blackemore, W.H. Corconan, Validity of the steady-state approximation applied to the pyrolysis of n-butane, Ind. Eng. Chem. Process. Des. Dev. 8(2) (1969) 206-209.[24] A.S. Tomlin, M.J. Polling, J.H. Merkin, Reduced mechanism for propane pyrolysis, Ind. Eng. Chem. Res. 34(11) (1995) 3749-3760.[25] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes:the Art of Scientific Computing, Third edition Cambridge University Press, Cambridge, 2007.[26] B. Chapman, G. Jost, R. van der Pas, Using OpenMP:Portable Shared Memory Parallel Programming, the MIT Press, Massachusetts, 2007.[27] Z.B. Zhang, G.Q. Wang, Y.G. Zhang, S.X. Xu, Elementary study of team cracking feedstock optimization, Petrochem. Technol. 37(1) (2008) 8-11. |