[1] H. Zhang, A. Li, W. Zhang, C. Shuang, Combination of Na-modified zeolite and anion exchange resin for advanced treatment of a high ammonia-nitrogen content municipal effluent, J. Colloid Interface Sci. 468(2016) 128-135. [2] C. Wang, Z. Li, Z. Pan, D. Li, Development and characterization of a highly sensitive fluorometric transducer for ultra low aqueous ammonia nitrogen measurements in aquaculture, Comput. Electron. Agric. 150(2018) 364-373. [3] M. Altomare, G.L. Chiarello, A. Costa, M. Guarino, E. Selli, Photocatalytic abatement of ammonia in nitrogen-containing effluents, Chem. Eng. J. 191(2012) 394-401. [4] X. Ke, Q. Bao, Y. Qi, X. Huang, H. Zhang, Toxicity assessment of sediments from the Liaohe River Protected Area (China) under the influence of ammonia nitrogen, heavy metals and organic contaminants, Environ. Toxicol. Pharmacol. 59(2018) 34-42. [5] M. Cong, H. Wu, T. Cao, J. Lv, Q. Wang, C. Ji, C. Li, J. Zhao, Digital gene expression analysis in the gills of Ruditapes philippinarum exposed to short- and long-term exposures of ammonia nitrogen, Aquat. Toxicol. 194(2018) 121-131. [6] L. Zhang, E.G. Xu, Y. Li, H. Liu, D.E. Vidal-Dorsch, J.P. Giesy, Ecological risks posed by ammonia nitrogen (AN) and un-ionized ammonia (NH3) in seven major river systems of China, Chemosphere 202(2018) 136-144. [7] Y. Li, E.G. Xu, W. Liu, Y. Chen, H. Liu, D. Li, Z. Liu, J.P. Giesy, H. Yu, Spatial and temporal ecological risk assessment of unionized ammonia nitrogen in Tai Lake, China (2004-2015), Ecotoxicol. Environ. Saf. 140(2017) 249-255. [8] Y. Zhu, X. Jin, W. Tang, X. Meng, B. Shan, Comprehensive analysis of nitrogen distributions and ammonia nitrogen release fluxes in the sediments of Baiyangdian Lake, China, J. Environ. Sci. 76(2019) 319-328. [9] J. Xu, G. Jin, H. Tang, P. Zhang, S. Wang, Y.-G. Wang, L. Li, Assessing temporal variations of Ammonia Nitrogen concentrations and loads in the Huaihe River Basin in relation to policies on pollution source control, Sci. Total Environ. 642(2018) 1386-1395. [10] D. Han, M.J. Currell, G. Cao, Deep challenges for China's war on water pollution, Environ. Pollut. 218(2016) 1222-1233. [11] F. Xu, Z. Gao, X. Jiang, W. Shang, J. Ning, D. Song, J. Ai, A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea, Mar. Pollut. Bull. 128(2018) 408-414. [12] M. Abboud-Abi Saab, A.E.R. Hassoun, Effects of organic pollution on environmental conditions and the phytoplankton community in the central Lebanese coastal waters with special attention to toxic algae, Reg. Stud. Mar. Sci. 10(2017) 38-51. [13] M.G. Antoniou, I. Boraei, M. Solakidou, Y. Deligiannakis, M. Abhishek, L.A. Lawton, C. Edwards, Enhancing photocatalytic degradation of the cyanotoxin microcystin-LR with the addition of sulfate-radical generating oxidants, J. Hazard. Mater. 360(2018) 461-470. [14] Y. Chai, W.-J. Deng, X. Qin, X. Xu, Occurrence of four species of algae in the marine water of Hong Kong, Mar. Pollut. Bull. 124(2017) 890-896. [15] L.C.V. Jacobs, P. Peralta-Zamora, F.R. Campos, R. Pontarolo, Photocatalytic degradation of microcystin-LR in aqueous solutions, Chemosphere 90(2013) 1552-1557. [16] WHO, Health criteria and other supporting information, Guidelines for Drinking Water Quality, Addendum to vol. 2,2nd ed., World Health Organization, Geneva 2008, pp. 95-110. [17] P.V. Haseena, K.S. Padmavathy, P. Rohit Krishnan, G. Madhu, Adsorption of ammonium nitrogen from aqueous systems using chitosan-bentonite film composite, Procedia Technol. 24(2016) 733-740. [18] Y. Zheng, J. Zhang, A. Wang, Fast removal of ammonium nitrogen from aqueous solution using chitosan-g-poly(acrylic acid)/attapulgite composite, Chem. Eng. J. 115(2009) 215-222. [19] Z. Sun, X. Qu, G. Wang, S. Zheng, R.L. Frost, Removal characteristics of ammonium nitrogen from wastewater by modified Ca-bentonites, Appl. Clay Sci. 107(2015) 46-51. [20] Y.F. Wang, F. Lin, W.Q. Pang, Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite, J. Hazard. Mater. 142(2007) 160-164. [21] H.W. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang, Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation, Angew. Chem. Int. Ed. 56(2017) 11860-11864. [22] H.W. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, Anionic group selfdoping as a promising strategy:Band-gap engineering and multi-functional applications of high-performance CO32--doped Bi2O2CO3, ACS Catal. 5(2015) 4094-4103. [23] H.W. Huang, Y. He, X.W. Li, M. Li, C. Zeng, F. Dong, X. Du, T.R. Zhang, Y.H. Zhang, Bi2O2(OH)(NO3) as a desirable[Bi2O2] (2+) layered photocatalyst:strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability, J. Mater. Chem. A 3(2015) 24547-24556. [24] X. Peng, M. Wang, F. Hu, F. Qiu, T. Zhang, H. Dai, Z. Cao, Multipath fabrication of hierarchical CuAl layered double hydroxide/carbon fiber composites for the degradation of ammonia nitrogen, J. Environ. Manag. 220(2018) 173-182. [25] L. Jiang, Y. Wang, C. Feng, Application of photocatalytic technology in environmental safety, Procedia Eng. 45(2012) 993-997. [26] H. Wang, X. Zhang, Y. Su, H. Yu, S. Chen, X. Quan, F. Yang, Photoelectrocatalytic oxidation of aqueous ammonia using TiO2 nanotube arrays, Appl. Surf. Sci. 311(2014) 851-857. [27] Y. Su, Y. Deng, Y. Du, Alternative pathways for photocatalytic degradation of microcystin-LR revealed by TiO2 nanotubes, J. Mol. Catal. A Chem. 373(2013) 18-24. [28] X. Wang, X. Wang, J. Zhao, J. Song, C. Su, Z. Wang, Adsorption-photocatalysis functional expanded graphite C/C composite for in-situ photocatalytic inactivation of Microcystis aeruginosa, Chem. Eng. J. 341(2018) 516-525. [29] X. Wang, X. Wang, J. Zhao, J. Song, L. Zhou, J. Wang, X. Tong, Y. Chen, An alternative to in situ photocatalytic degradation of microcystin-LRby worm-like N, P co-doped TiO2/expanded graphite by carbon layer (NPT-EGC) floating composites, Appl. Catal. B Environ. 206(2017) 479-489. [30] Q. Guo, H. Li, Q. Zhang, Y. Zhang, Fabrication, characterization and mechanism of a novel Z-scheme Ag3PO4/NG/polyimide composite photocatalyst for microcystin-LR degradation, Appl. Catal. B Environ. 229(2018) 192-203. [31] X. Wang, X. Wang, J. Zhao, J. Song, C. Su, Z. Wang, Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa, Water Res. 131(2018) 320-333. [32] H.W. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, In situ assembly of BiOI@Bi12O17Cl2 p-n junction:charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis, Appl. Catal. B Environ. 199(2016) 75-86. [33] F. Chen, H.W. Huang, L. Ye, T. Zhang, Y. Zhang, X. Han, T. Ma, Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction, Adv. Funct. Mater. 28(2018)1804284. [34] H.W. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures, ACS Appl. Mater. Interfaces 7(2015) 482-492. [35] Water quality-Determination of ammonia nitrogen-Salicylic acid spectrophotometry, Environmental Protection Standard of People's Republic of China, HJ536-2009, Dec. 2009. [36] H.C. Yin, Doped Nanosized TiO2 Photocatalysts for Inhibiting the Growth of Cyanobacteria, PhD thesis Kunming University of Science and Technology, 2006. [37] S. Rasalingam, H.S. Kibombo, C.M. Wu, S. Budhi, R. Peng, J. Baltrusaitis, R.T. Koodali, Influence of Ti-O-Si hetero-linkages in the photocatalytic degradation of Rhodamine B, Catal. Commun. 31(2013) 66-70. [38] M. Khodadadi, M.H. Ehrampoush, M.T. Ghaneian, A. Allahresani, A.H. Mahvi, Synthesis and characterizations of FeNi3@SiO2@TiO2 nanocomposite and its application in photo-catalytic degradation of tetracycline in simulated wastewater, J. Mol. Liq. 255(2018) 224-232. |