[1] Y. Wang, R. Wu, Y. Zhao, Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases, Catal. Today 158(2010) 470-474. [2] S. Takenaka, Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts, Int. J. Hydrog. Energy 29(2004) 1065-1073. [3] X. Yan, Y. Liu, B. Zhao, et al., Methanation over Ni/SiO2:Effect of the catalyst preparation methodologies, Int. J. Hydrog. Energy 38(2013) 2283-2291. [4] X. Zhang, W.J. Sun, W. Chu, Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation, J. Fuel Chem. Technol. 41(2013) 96-101. [5] I. Czekaj, F. Loviat, F. Raimondi, et al., Characterization of surface processes at the Ni based catalyst during the methanation of biomass-derived synthesis gas:X-ray photoelectron spectroscopy (XPS), Appl. Catal. A Gen. 329(2007) 68-78. [6] A. Zhao, W. Ying, H. Zhang, et al., Ni/Al2O3 catalysts prepared by solution combustion method for syngas methanation, Catal. Commun. 17(2012) 34-38. [7] S. Ma, Y.S. Tan, Y. Han, Methanation of syngas over coral reef-like Ni/Al2O3 catalysts, J. Nat. Gas Chem. 20(2011) 435-440. [8] J. Liu, J. Yu, F.B. Su, et al., Intercorrelation of structure and performance of Ni-Mg/Al2O3 catalysts prepared with different methods for syngas methanation, Catal. Sci. Technol. 4(2014) 472-481. [9] J. Liu, W.L. Shen, D.M. Cui, et al., Syngas methanation for substitute natural gas over NiMg/Al2O3 catalyst in fixed and fluidized bed reactors, Catal. Commun. 38(2013) 35-39. [10] S. Tada, R. Kikuchi, A. Takagaki, et al., Study of RuNi/TiO2 catalysts for selective CO methanation, Appl. Catal. B Environ. 140-141(2013) 258-264. [11] L.C. Loc, N.M. Huan, N.K. Dung, et al., A study on methanation of carbon monoxide over catalysts NiO/TiO2 and NiO/γ-Al2O3, Adv. Nat. Sci. Nanosci. Nanotechnol. 7(2006) 91-105. [12] D.C.D. da Silva, S. Letichevsky, L.E.P. Borges, et al., The Ni/ZrO2 catalyst and the methanation of CO and CO2, Int. J. Hydrog. Energy 37(2012) 8923-8928. [13] F.B. Derekaya, G. Yasar, The CO methanation over NaY-zeolite supported Ni/Co3O4, Ni/ZrO2, Co3O4/ZrO2 and Ni/Co3O4/ZrO2 catalysts, Catal. Commun. 13(2011) 73-77. [14] X. Yang, X. Wang, G. Gao, et al., Nickel on a macro-mesoporous Al2O3@ZrO2 core/shell nanocomposite as a novel catalyst for CO methanation, Int. J. Hydrog. Energy 38(2013) 13926-13937. [15] Y. Yu, Y.M. Chan, Z.F. Bian, et al., Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni-CeO2 catalyst:Kinetics and DRIFTS studies, Int. J. Hydrog. Energy 43(2018) 15191-15204. [16] Y. Yu, Z.F. Bian, F.J. Song, et al., Influence of calcination temperature on activity and selectivity of Ni-CeO2 and Ni-Ce0.8Zr0.2O2 catalysts for CO2 methanation, Top. Catal. 61(2018) 1514-1527. [17] J. Ashok, M.L. Ang, S. Kawi, Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts:Influence of preparation methods, Catal. Today 281(2017) 304-311. [18] Z.W. Li, M. Li, Z.F. Bian, et al., Design of highly stable and selective core/yolk-shell nanocatalysts-A review, Appl. Catal. B Environ. 188(2016) 324-341. [19] Z.W. Li, M. Li, J. Ashok, et al., NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound, Energy Convers. Manag. 180(2019) 822-830. [20] J. Barrientos, M. Lualdi, M. Boutonnet, et al., Deactivation of supported nickel catalysts during CO methanation, Appl. Catal. A Gen. 486(2014) 143-149. [21] C.K. Vance, C.H. Bartholomew, Hydrogenation of carbon monoxide on group viii metals:Effect of support on activity/selectivity and adsorption properties of nickel, Appl. Catal. 7(1983) 169-177. [22] D.M. Cui, J. Liu, J. Yu, et al., Necessity of moderate metal-support interaction in Ni/Al2O3 for syngas methanation at high temperatures, RSC Adv. 5(2015) 10187-10196. [23] H.T. Li, Y.L. Xu, C.G. Gao, et al., Structure and textural evolution of Ni/γ-Al2O3 catalyst under hydrothermal conditions, Catal. Today 158(2010) 475-480. [24] G. Busca, Structural, surface, and catalytic properties of aluminas, in:B. Gates, F.C. Jentoft (Eds.), Advances in Catalysis, Elsevier Inc., London, 2014. [25] G. Garbarino, S. Chitsazan, T.K. Phung, et al., Preparation of supported catalysts:A study of the effects of small amounts of silica on Ni/Al2O3 catalysts, Appl. Catal. A Gen. 505(2015) 86-97. [26] A. Jean-Marie, A. Griboval-Constant, A.Y. Khodakov, et al., Cobalt supported on alumina and silica-doped alumina:Catalyst structure and catalytic performance in Fischer-Tropsch synthesis, C. R. Chim. 12(2009) 660-667. [27] J. Ramírez, F. Sánchez-Minero, Support effects in the hydrotreatment of model molecules, Catal. Today 130(2008) 267-271. [28] J. Jiao, O.Y. Jing, H.M. Yang, One-step synthesis of highly ordered Pt/MCM-41 from natural diatomite and the superior capacity in hydrogen storage, Appl. Clay Sci. 99(2014) 246-253. [29] H.M. Yang, Y.H. Deng, C.F. Du, et al., Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite, Appl. Clay Sci. 47(2010) 351-355. [30] H.M. Yang, C.F. Du, S.M. Jin, et al., Enhanced photoluminescence property of SnO2 nanoparticles contained in mesoporous silica synthesized with leached talc as Si source, Microporous Mesoporous Mater. 102(2007) 204-211. [31] H.L. Lu, X.Z. Yang, G.J. Gao, et al., Mesoporous zirconia-modified clays supported nickel catalysts for CO and CO2 methanation, Int. J. Hydrog. Energy 39(2014) 18894-18907. [32] S.B. Ren, H.Z. Wen, X.Z. Cao, et al., Promotion of Ni/clay catalytic activity for hydrogenation of naphthalene by organic modification of clay, Chin. J. Catal. 35(2014) 546-552. [33] R. Kumar, B.S. Rana, D. Verma, et al., Hydrotreatment of renewable oils using hierarchical mesoporous H-ZSM-5 synthesized from kaolin clay, RSC Adv. 5(2015) 39342-39349. [34] C.F. Du, H.M. Yang, Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials, J. Colloid Interface Sci. 369(2012) 216-222. [35] Q.H. Zhao, X.Y. Liu, M.L. Sun, et al., Natural kaolin derived stable SBA-15 as a support for Fe/BiOCl:A novel and efficient Fenton-like catalyst for the degradation of 2-nitrophenol, RSC Adv. 5(2015) 36948-36956. [36] T.T. Li, Z. Shu, J. Zhou, et al., Template-free synthesis of kaolin-based mesoporous silica with improve specific surface area by a novel approach, Appl. Clay Sci. 107(2015) 182-187. [37] Z. Shu, T.T. Li, J. Zhou, et al., Template-free preparation of mesoporous silica and alumina from natural kaolinite and their application in methylene blue adsorption, Appl. Clay Sci. 102(2014) 33-40. [38] M. Auta, B.H. Hameed, Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue, Chem. Eng. J. 198-199(2012) 219-227. [39] S. Xu, X.L. Wang, Highly active and coking resistant Ni/CeO2-ZrO2 catalyst for partial oxidation of methane, Fuel 84(2005) 563-567. [40] J.J. Guo, H. Lou, H. Zhao, et al., Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels, Appl. Catal. A Gen. 273(2004) 75-82. [41] D.M. Cui, J. Liu, J. Yu, et al., Attrition-resistant Ni-Mg/Al2O3 catalyst for fluidized bed syngas methanation, Catal. Sci. Technol. 5(2015) 3119-3129. [42] L.F. Zhang, J.F. Lin, Y. Chen, Studies of surface NiO species in NiO/SiO2 catalysts using temperature-programmed reduction and X-ray diffraction, J. Chem. Soc. Faraday Trans. 88(1992) 2075-2078. [43] S. Eckle, H.G. Anfang, R.J. Behm, What drives the selectivity for CO methanation in the methanation of CO2-rich reformate gases on supported Ru catalysts, Appl. Catal. A Gen. 391(2011) 325-333. [44] J. Klose, M. Baerns, Kinetics of the methanation of carbon monoxide on an aluminasupported nickel catalyst, J. Catal. 85(1984) 105-116. [45] H. Ozdemire, M.A.F. Oksuzomer, M.A. Gurkaynak, Preparation and characterization of Ni based catalysts for the catalytic oxidation of methane:Effect of support basicity on H2/CO ratio and carbon deposition, Int. J. Hydrog. Energy 35(2010) 12147-12160. [46] C. Mirodatos, H. Praliaud, M. Primet, Deactivation of nickel-based catalysts during CO methanation and disproportionation, J. Catal. 107(1987) 275-287. |