Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (6): 1272-1281.DOI: 10.1016/j.cjche.2018.08.021
• Special Issue: Separation Process Intensification of Chemical Engineering • Previous Articles Next Articles
Jing Fang1,2, Xiaomin Cheng1,2, Zhongyang Li1,2, Hao Li1,2, Chunli Li1,2
Received:
2018-07-06
Revised:
2018-08-25
Online:
2019-08-19
Published:
2019-06-28
Contact:
Jing Fang
Supported by:
Jing Fang1,2, Xiaomin Cheng1,2, Zhongyang Li1,2, Hao Li1,2, Chunli Li1,2
通讯作者:
Jing Fang
基金资助:
Jing Fang, Xiaomin Cheng, Zhongyang Li, Hao Li, Chunli Li. A review of internally heat integrated distillation column[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1272-1281.
Jing Fang, Xiaomin Cheng, Zhongyang Li, Hao Li, Chunli Li. A review of internally heat integrated distillation column[J]. 中国化学工程学报, 2019, 27(6): 1272-1281.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.08.021
[1] R.E. Fitzmorris, R.S.H. Mah, Improving distillation column design using thermodynamic availability analysis, AIChE J. 26(2) (1980) 265-273. [2] R.S.H. Mah, J.J. Nicholas, R.B. Wodnik, Distillation with secondary reflux and vaporization:A comparative evaluation, AIChE J. 23(5) (2010) 651-658. [3] D. Bruinsma, S. Spoelstra, Heat pumps in distillation, ECN (7) (2010). [4] Z. Olujic, F. Fakhri, A. de Rijke, J. de Graauw, P.J. Jansens, Internal heat integration-The key to an energy conserving distillation column, J. Chem. Technol. Biotechnol. 78(2-3) (2010) 241-248. [5] T. Wakabayashi, S. Hasebe, Effect of internal heat exchange rate distribution on energy saving in heat integrated distillation column (HIDiC), Chem. Eng. 37(6) (2011) 499-505. [6] M.J. Olanrewaju, B. Huang, A. Afacan, Development of a simultaneous continuum and noncontinuum state estimator with application on a distillation process, AIChE J. 58(2) (2012) 480-492. [7] T. Takamatsu, M. Nakaiwa, K.J. Huang, T. Akiya, H. Noda, T. Nakanishi, K. Aso, Simulation oriented development of a new heat integrated distillation column and its characteristics for energy saving, Comput. Chem. Eng. 21(10) (1997) S243-S247. [8] M. Gadalla, L. Jiménez, Z. Olujic, P.J. Jansens, A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC), Comput. Chem. Eng. 31(10) (2007) 1346-1354. [9] B. Suphanit, Design of internally heat-integrated distillation column (HIDiC):Uniform heat transfer area versus uniform heat distribution, Energy 35(3) (2010) 1505-1514. [10] T. Wakabayashi, S. Hasebe, Design of heat integrated distillation column by using H-xy and T-xy diagrams, Comput. Chem. Eng. 56(2013) 174-183. [11] L. Cong, L. Chang, X.G. Liu, Development of extended generic model control for highpurity heat integrated distillation column using online concentration estimation, Ind. Eng. Chem. Res. 54(51) (2015) 12897-12907. [12] J.C. Wang, G.E. Henke, Tridiagonal matrix for distillation, Hydrocarb. Process. 45(8) (1966) 155-163. [13] L. Yng Hwang, On the nonlinear wave theory for dynamics of binary distillation columns, AIChE J. 37(5) (2010) 705-723. [14] L. Yng Hwang, Nonlinear wave theory for dynamics of binary distillation columns, AIChE J. 37(5) (1991) 705-723. [15] X.G. Liu, Y.X. Zhou, C. Lin, Z. Jie, Nonlinear wave modeling and dynamic analysis of internal thermally coupled distillation columns, AIChE J. 58(4) (2012) 1146-1156. [16] L. Cong, L. Chang, X.G. Liu, Nonlinear-wave based analysis and modeling of heat integrated distillation column, Sep. Purif. Technol. 150(2015) 119-131. [17] H.H. Tung, J.F. Davis, R.S.H. Mah, Fractionating condensation and evaporation in plate-fin devices, AIChE J. 32(7) (1986) 1116-1124. [18] Ž. Olujić, L. Sun, A.D. Rijke, P.J. Jansens, Conceptual design of an internally heat integrated propylene-propane splitter, Energy 31(15) (2006) 3083-3096. [19] B. Suphanit, Optimal heat distribution in the internally heat-integrated distillation column (HIDiC), Energy 36(7) (2011) 4171-4181. [20] Z. Olujic, L. Sun, M. Gadalla, A.D. Rijke, P.J. Jansens, Enhancing thermodynamic efficiency of energy intensive distillation columns via internal heat integration, Chem. Biochem. Eng. Q. 22(4) (2008) 383-392. [21] J. Goldemberg, Biomass and energy, Quim Nova 32(3) (2009) 582-587. [22] H. Noda, T. Takamatsu, K. Aso, T. Nakanishi, K. Yoshida, M. Nakaiwa, T. Mukaida, N. Kuratani, Development on a coaxial heat integrated distillation column (HIDiC), Korean J. Chem. Eng. 17(5) (2000) 593-596. [23] R.A. De, W. Tesselaer, M.A. Gadalla, Z. Olujic, P.J. Jansens, Heat and mass transfer characteristics of an annular sieve tray, IChemE Symposium Series, 112, 2006427-452. [24] H. Noda, T. Mukaida, M. Kaneda, K. Kataoka, M. Nakaiwa, Internal column-tocolumn heat transfer characteristics for energy-saving distillation system, Proceedings of the Distillation and Absorption, London UK, 2006. [25] L.H. Xu, D.W. Chen, B.H. Yan, X.G. Yuan, Experimental investigation on heat exchange and separation performance of an annular structured internal heatintegrated distillation column, Chin. J. Chem. Eng. 22(10) (2014) 1087-1091. [26] G.H.S.F. Ponce, M. Alves, J.C.C. Miranda, R. Maciel Filho, M.R. Wolf Maciel, Using an internally heat-integrated distillation column for ethanol-water separation for fuel applications, Chem. Eng. Res. Des. 95(2015) 55-63. [27] J. Fang, R. Zhao, C.I. Li, B.H. Xuan, Heat transfer property of concentric internally heat integrated distillation column, Chem. Ind. Eng. Prog. 35(8) (2016) 2342-2349. [28] M. Nakaiwa, K.J. Huang, M. Owa, T. Akiya, T. Nakane, M. Sato, T. Takamatsu, H. Yoshitome, Potential energy savings in ideal heat-integrated distillation column, Appl. Therm. Eng. 18(11) (1998) 1077-1087. [29] K. Iwakabe, M. Nakaiwa, K. Huang, T. Nakanishi, A. Røsjorde, T. Ohmori, A. Endo, T. Yamamoto, Energy saving in multicomponent separation using an internally heatintegrated distillation column (HIDiC), Appl. Therm. Eng. 26(13) (2006) 1362-1368. [30] M. Gadalla, Z. Olujic, L. Sun, A. De Rijke, P.J. Jansens, Pinch analysis-based approach to conceptual design of internally heat-integrated distillation columns, Chem. Eng. Res. Des. 83(8) (2005) 987-993. [31] K. Hamaguchi, L.L. Yang, L. Hanzo, Internally heat-integrated distillation columns:A review, Chem. Eng. Res. Des. 81(1) (2003) 162-177. [32] G.G. Haselden, Distillation processes and apparatus, United States Patent, 4025398(1977). [33] J.D. Seader, Continuous distillation apparatus and method, United States Patent, 4234391(1980). [34] J.D. Seader, Continuous distillation apparatus and method of operation, EP, EP0010253(1981). [35] J.D. Seader, S.C. Baer, Continuous distillation apparatus and method, Final Report, United States, 1984. [36] H.H. Tung, J.F. Davis, R.S.H. Mah, Fractionating condensation and evaporation in plate-fin devices, AIChE J. 32(32) (1986) 1116-1124. [37] Hugill, System for stripping and rectifying a fluid mixture, US, WO2003011418A1(2003). [38] S. Sunder, P.A. Houghton, V.V. Kuznetsov, Plate-fin exchangers with textured surfaces, United States Patent, 6834515(2004). [39] Hugill, J. Anthony, System for stripping and rectifying a fluid mixture, United States Patent, 7111673(2006). [40] R. Govind, Separate striping and rectification columns, US Patent, 4615770(1986). [41] J.D. Graauw, M.J. Steenbakker, A.D. Rijke, Z. Olujic, P.J. Jansens, Heat Integrated Distillation Column, European Patent Office, 2003. [42] A.D. Rijke, Development of a concentric internally heat integrated distillation column (HIDiC), Ph.D. Thesis, Delft University of Technology (2007). [43] O.S.L.Bruinsma,T.Krikken,J.Cot,M.Sarić,S.A.Tromp, Ž.Olujić,A.I.Stankiewicz, Thestructured heat integrated distillation column, Chem. Eng. Res. Des. 90(4) (2012) 458-470. [44] K. Aso, H. Matsuo, H. Noda, Internal heat exchange type distillation column, European Patent, WO 96/06665(1996). [45] H.F. Cong, X.G. Li, H. Li, J.M. Patrick, X. Gao, Performance analysis and structural optimization of multi-tube type heat integrated distillation column (HIDiC), Sep. Purif. Technol. 188(2017) 303-315. [46] G. Ondrey, Chementator:This distillation column promises substantial energy reductions, Chem. Eng. 10(2012). [47] D. Maiti, A.K. Jana, A.N. Samanta, A novel heat integrated batch distillation scheme, Appl. Energy 88(12) (2011) 5221-5225. [48] M. Nakaiwa, K. Huang, A. Endo, T. Ohmori, T. Akiya, T. Takamatsu, Internally heatintegrated distillation columns:A review, Chem. Eng. Res. Des. 81(1) (2003) 162-177. [49] A.K. Jana, A new divided-wall heat integrated distillation column (HIDiC) for batch processing:Feasibility and analysis, Appl. Energy 172(2016) 199-206. [50] M.Nakaiwa, K.Huang, K.Naito, A.Endo, T. Akiya,T.Nakane,T. Takamatsu, Parameter analysis and optimization of ideal heat integrated distillation columns, Comput. Chem. Eng. 25(4-6) (2001) 737-744. [51] C. Pritchard, M. Nakaiwa, Adding Internal Heat Integration to Pressure-swing Distillation (PSD) Process, University of Prince Edward Island & Interdisciplinary Phd Program, 2000. [52] K. Huang, L. Shan, Q. Zhu, J. Qian, Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process, Appl. Therm. Eng. 28(8) (2008) 923-932. [53] L.H. Xu, X.G. Yuan, D.W. Chen, Y.Q. Luo, K. Yu, Reversibility analysis for design optimization of an internally heat-integrated distillation column, Chem. Eng. Technol. 36(7) (2013) 1147-1156. [54] K. Iwakabe, M. Nakaiwa, K. Huang, T. Nakanishi, A. Rosjorde, T. Ohmori, A. Endo, T. Yamamoto, Performance of an internally heat-integrated distillation column (HIDiC) in separation of ternary mixtures, J. Chem. Eng. Jpn 39(4) (2006) 417-425. [55] K.J. Huang, K. Matsuda, T. Takamatsu, M. Nakaiwa, The influences of pressure distribution on an ideal heat-integrated distillation column (HIDiC), J. Chem. Eng. Jpn 39(6) (2006) 652-660. [56] B. Kiran, A.K. Jana, A.N. Samanta, A novel intensified heat integration in multicomponent distillation, Energy 41(1) (2012) 443-453. [57] R. Gutiérrez-Guerra, J. Cortez-González, R. Murrieta-Dueñas, J.G. SegoviaHernández, S. Hernández, A. Hernández-Aguirre, Design and optimization of heatintegrated distillation column schemes through a new robust methodology coupled with a Boltzmann-based estimation of distribution algorithm, Ind. Eng. Chem. Res. 53(27) (2014) 11061-11073. [58] Andreas Harwardt, Wolfgang Marquardt, Heat-integrated distillation columns:Vapor recompression or internal heat integration? International Conference on Intelligent Computation Technology & Automation 2012, pp. 702-705. [59] J.R. Alcántara-Avila, F.I. Gómez-Castro, J.G. Segovia-Hernández, K.I. Sotowa, T. Horikawa, Optimal design of cryogenic distillation columns with side heat pumps for the propylene/propane separation, Chem. Eng. Process. Process Intensif. 82(8) (2014) 112-122. [60] V.R. Dhole, B. Linnhoff, Distillation column targets, Comput. Chem. Eng. 17(5-6) (1993) 549-560. [61] J.R. Alcántara-Avila, S. Hasebe, M. Kano, New synthesis procedure to find the optimal distillation sequence with internal and external heat integrations, Ind. Eng. Chem. Res. 52(13) (2013) 4851-4862. [62] T. Wakabayashi, S. Hasebe, Higher energy saving with new heat integration arrangement in heat-integrated distillation column, AIChE J. 61(10) (2015) 3479-3488. [63] T. Takamatsu, I. Hashimoto, Y. Hashimoto, Selection of manipulated variables to minimize interaction in multivariate control of a distillation column, Kagaku Kōgaku Ronbunshū 11(6) (1985) 640-646. [64] Y. Zhu, X.G. Liu, Investigating control schemes for an ideal thermally coupled distillation column (ITCDIC), Chem. Eng. Technol. 28(9) (2005) 1048-1055. [65] K.J. Huang, M. Nakaiwa, T. Akiya, K. Aso, T. Takamatsu, A numerical consideration on dynamic modeling and control of ideal heat integrated distillation columns, J. Chem. Eng. Jpn 29(2) (1996) 344-351. [66] T. Takamatsu, K. Matsuda, K.G. Huang, K. Iwakabe, Choosing more controllable configuration for an internally heat-integrated distillation column (SC), J. Chem. Eng. Jpn 39(8) (2006) 818-825. [67] K.J. Huang, D.Z. Zhan, M. Nakaiwa, T. Nakan, T. Takamatsu, Control of ideal heat integrated distillation columns, Chin. J. Chem. Eng. 7(4) (1999) 283-294. [68] M. Nakaiwa, K.J. Huang, M. Owa, T. Akiya, T. Nakane, T. Takamatsu, Operating an ideal heat integrated distillation column with different control algorithms, Comput. Chem. Eng. 22(12) (1998) S389-S393. [69] K.J. Huang, S.J. Wang, K. Iwakabe, L. Shan, Q. Zhu, Temperature control of an ideal heat-integrated distillation column (HIDiC), Chem. Eng. Sci. 62(22) (2007) 6486-6491. [70] K.J. Huang,X. Luo, Boosting temperature inferential control performance indistillation columns, Hydrocarb. Process. 89(7) (2010) 75. [71] K.J. Huang, J.X. Qian, M. Nakaiwa, T. Nakane, T. Takamatsu, Assessment of control configurations for a general heat integrated distillation column, Chin. J. Chem. Eng. 8(4) (2000) 339-346. [72] K.J. Huang, M. Nakaiwa, T. Takamatsu, Considering process nonlinearity in dualpoint composition control of a high-purity ideal heat integrated distillation column, Chin. J. Chem. Eng. 9(1) (2001) 58-64. [73] Z. Yu, X.G. Liu, Dynamics and control of high purity heat integrated distillation columns, Ind. Eng. Chem. Res. 44(23) (2005) 8806-8814. [74] X.G. Liu, C. Wang, L. Cong, Adaptive robust generic model control of high-purity internal thermally coupled distillation column, Chem. Eng. Technol. 34(1) (2011) 111-118. [75] X.G. Liu, C.Y. Wang, C. Lin, D. Feng, Adaptive generalised predictive control of high purity internal thermally coupled distillation column, Can. J. Chem. Eng. 90(2) (2012) 420-428. [76] X.G. Liu, L. Cong, Y.X. Zhou, Nonlinear model predictive control based on wave model of high-purity internal thermally coupled distillation columns, Ind. Eng. Chem. Res. 52(19) (2013) 6470-6479. [77] X.G. Liu, Y.X. Zhou, C. Lin, D. Feng, High-purity control of internal thermally coupled distillation columns based on nonlinear wave model, J. Process Control 21(6) (2008) 920-926. [78] A.K. Jana, Differential geometry-based adaptive nonlinear control law:Application to an industrial refinery process, IEEE Trans. Ind. Inf. 9(4) (2013) 2014-2022. [79] S. Banerjee, A.K. Jana, High gain observer based extended generic model control with application to a reactive distillation column, J. Process Control 24(4) (2014) 235-248. [80] Y.J. Wang, J.B. Rawlings, A new robust model predictive control method I:Theory and computation, J. Process Control 14(3) (2004) 231-247. [81] Y.J. Wang, J.B. Rawlings, A new robust model predictive control method. Ⅱ:Examples, J. Process Control 14(3) (2004) 249-262. [82] C. Lin, X.G. Liu, C.Y. Wang, Dynamic matrix control of a high-purity internal thermally coupled distillation column, Can. J. Chem. Eng. 92(4) (2014) 696-702. [83] K. Meyer, T. Bisgaard, J.K. Huusom, J. Abildskov, Supervisory model predictive control of the heat integrated distillation column, IFAC Papers On Line, 50-12017, pp. 7375-7380. [84] K. Matsuda, K. Iwakabe, M. Nakaiwa, Recent advances in internally heat-integrated distillation columns (HIDiC) for sustainable development, J. Chem. Eng. Jpn 45(6) (2012) 363-372. [85] K. Horiuchi, Energy-saving characteristic of heat integrated distillation column technology applied to multi-component petroleum distillation, Institution of Chemical Engineers Symposium Series in Distillation & Absorption 2006, p. 152. [86] K. Kataoka, H. Noda, H. Yamaji, T. Mukaida, M. Kaneda, A Compressor-free Hidic System for Recovery of Waste Solvent Mixtures, World Congress of Chemical Engineering, Montreal, Canada, 2009. [87] K. Horiuchi, K. Matsuda, K. Iwakabe, M. Nakaiwa, Evaluation of economical and environmental performance of an internally heat-integrated distillation column (HIDiC), Kagaku Kogaku Ronbunshu 34(4) (2008) 444-447. [88] K. Iwakabe, K.Horiuchi, K. Matsuda, T. Nakanishi, M. Ikeda, S. Taniguchi, T. Yamamoto, S. Kataoka, T. Ohmori, M. Nakaiwa, Analysis of operation results of the internally heat integrated distillation column (HIDiC) pilot pant in Japan, AIChE Meeting (2008). [89] K. Horiuchi, M. Nakaiwa, K. Iwakabe, K. Matsuda, M. Toda, Intensification of the process flow in the pilot plant of an internally heat-integrated distillation column (HIDiC), Chem. Eng. 34(1) (2008) 70-75. [90] K.Kataoka, H.Noda,N. Kuratani,T.Mukaida, M.Kaneda, H. Yamaji,M. Nakaiwa,Plate efficiency and heat transfer characteristics in heat-integrated distillation, Asian Pacific Confederation of Chemical Engineering Congress Program 2005, pp. 1-10. [91] G.S. Wu, K.J. Huang, H.S. Chen, S.F. Wang, N.N. Wei, S.J. Wang, Simplified design and control of an ideal heat-integrated distillation column (ideal HIDiC), Asia Pac. J. Chem. Eng. 7(6) (2012) 912-927. [92] H.S. Chen, K.J. Huang, S.F. Wang, A novel simplified configuration for an ideal heatintegrated distillation column (ideal HIDiC), Sep. Purif. Technol. 73(2) (2010) 230-242. [93] J. Stichlmair, T. Frey, Reactive distillation processes, Chem. Eng. Technol. 22(2) (2010) 95-103. [94] S.J. Wang, D.S.H. Wong, S.W. Yu, Design and control of transesterification reactive distillation with thermal coupling, Comput. Chem. Eng. 32(12) (2008) 3030-3037. [95] D.D. Awachar, S.P. Shirsat, N.V. Sancheti, Simulation of transesterification reactive distillation with total thermal coupling, Int. J. Innov. Eng. Technol. 5(3) (2015) (2319-1058). [96] K. Cheng, S.J. Wang, D.S.H. Wong, Steady-state design of thermally coupled reactive distillation process for the synthesis of diphenyl carbonate, Comput. Chem. Eng. 52(10) (2013) 262-271. [97] S. Banerjee, A.K. Jana, Internally heat integrated batch distillation:Vapor recompression and nonlinear control, Sep. Purif. Technol. 189(2017) 267-278. [98] B. Kiran, A.K. Jana, Introducing vapor recompression mechanism in heat-integrated distillation column:Impact of internal energy driven intermediate and bottom reboiler, AIChE J. 61(1) (2015) 118-131. [99] B. Kiran, A.K. Jana, Thermal integration of vapor recompression in a heat-integrated distillation:Impact of multiple intermediate reboilers, Chem. Eng. Res. Des. 114(2016) 171-179. |
[1] | Yingxi Gao, Jiayi Shi, Jie Wang, Fan Zhang, Shichao Tian, Zhiyong Zhou, Zhongqi Ren. Enrichment of nervonic acid in Acer truncatum Bunge oil by combination of two-stage molecular distillation, one-stage urea complexation and five-stage solvent crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 61-71. |
[2] | Kejin Huang, Shuaishuai Han, Lijing Zang, Haisheng Chen, Yihang Luo, Liang Zhang, Yang Yuan, Xing Qian, Shaofeng Wang. Configuring topologically optimum vapor recompressed dividing-wall distillation columns to maximize operating efficiency [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 247-264. |
[3] | Xia Xiong, Zuohua Liu, Changyuan Tao, Yundong Wang, Fangqin Cheng, Hong Li. Reduced power consumption in stirred vessel with high solid loading by equipping punched baffles [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 203-214. |
[4] | Xinhao Li, Qing Ye, Jinlong Li, Lingqiang Yan, Xue Jian, Licheng Xie, Jianyu Zhang. Investigation of energy-efficient heat pump assisted heterogeneous azeotropic distillation for separating of acetonitrile/ethyl acetate/n-hexane mixture [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 20-33. |
[5] | Wei Qin, Lijing Zang, Kejin Huang, Haisheng Chen, Yang Yuan, Xing Qian, Liang Zhang, Shaofeng Wang. Reinforced temperature control of a reactive double dividing-wall distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 288-295. |
[6] | Qinggang Xu, Yasen Dai, Qing Zhao, Zhengrun Chen, Peizhe Cui, Zhaoyou Zhu, Yinglong Wang, Jun Gao, Yixin Ma. Economy, environmental assessment and energy conservation for separation of isopropanol/diisopropyl ether/water multi-azeotropes via extractive distillation coupled pervaporation process [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 353-363. |
[7] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
[8] | Xinqiang You, Kai Zhao, Ling Li, Ting Qiu. Ionic liquids as entrainer in extractive distillation for effectively separating 1-propanol–water azeotropic mixture [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 224-233. |
[9] | Jia Ren, Zengqiang Chen, Mingwei Sun, Qinglin Sun, Zenghui Wang. Proportion integral-type active disturbance rejection generalized predictive control for distillation process based on grey wolf optimization parameter tuning [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 234-244. |
[10] | Jun Li, Liqiang Zhang, Xiao Zhu, Mengze Zhang, Tai Feng, Xiqiang Zhao, Tao Wang, Zhanlong Song, Chunyuan Ma. Systematic investigation of SO2 adsorption and desorption by porous powdered activated coke: Interaction between adsorption temperature and desorption energy consumption [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 140-148. |
[11] | Xiaomin Qiu, Yuanyuan Shen, Zhengkun Hou, Qi Wang, Zhaoyou Zhu, Yinglong Wang, Jingwei Yang, Jun Gao. Mechanism analysis of solvent selectivity and energy-saving optimization in vapor recompression-assisted extractive distillation for separation of binary azeotrope [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 271-279. |
[12] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[13] | Hui Pan, Xinshuang Li, Yichao Shen, Xiang Wu, Feng Ju, Yuzhe Li, Gaosheng Wu, Bo Ai, Baoyun Xu, Hao Ling. Novel design of lubricant-type vacuum distillation process for lube base oils production from hydrocracking tail oil [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 121-132. |
[14] | Jun Pan, Xianli Xu, Zhaohui Wang, Shi-Peng Sun, Zhaoliang Cui, Lassaad Gzara, Iqbal Ahmed, Omar Bamaga, Mohammed Albeirutty, Enrico Drioli. Innovative hydrophobic/hydrophilic perfluoropolyether (PFPE)/polyvinylidene fluoride (PVDF) composite membrane for vacuum membrane distillation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 248-257. |
[15] | Ran An, Shengxin Chen, Shun Hou, Yuting Zhu, Chunhu Li, Xinbao Zhu, Ruixia Liu, Weizhong An. Simulation and design of a heat-integrated double-effect reactive distillation process for propylene glycol methyl ether production [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 103-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||