[1] N. Arun, R.V. Sharma, A.K. Dalai, Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks:Strategies for catalyst design and development, Renew. Sust. Energ. Rev. 48(2015) 240-255. [2] W. Wang, Y. Yang, H. Luo, W. Liu, Effect of additive (Co, La) for Ni-Mo-B amorphous catalyst and its hydrodeoxygenation properties, Catal. Commun. 11(2010) 803-807. [3] T.N. Kalnes, K.P. Koers, T. Marker, D.R. Shonnard, A technoeconomic and environmental life cycle comparison of green diesel to biodiesel and syndiesel, Environ. Prog. Sustain. Energy 28(2009) 111-120. [4] T.J. Benson, R. Hernandez, W.T. French, E.G. Alley, W.E. Holmes, Elucidation of the catalytic cracking pathway for unsaturated mono-, di-, and triacylglycerides on solid acid catalysts, J. Mol. Catal. A Chem. 303(2009) 117-123. [5] D. Kubička, P. Šimáček, N. Žilkova, Transformation of vegetable oils into hydrocarbons over mesoporous-alumina-supported CoMo catalysts, Top. Catal. 52(2009) 161-168. [6] M.G. Kulkarni, A.K. Dalai, N.N. Bakhshi, Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive, Bioresour. Technol. 98(2007) 2027-2033. [7] S.A. Biktashev, R.A. Usmanov, R.R. Gabitov, R.A. Gazizov, F.M. Gumerov, F.R. Gabitov, I.M. Abdulagatov, R.S. Yarullin, I.A. Yakushev, Transesterification of rapeseed and palm oils in supercritical methanol and ethanol, Biomass Bioenergy 35(2011) 2999-3011. [8] E. Sari, C. Dimaggio, M. Kim, S.O. Salley, K.Y.S. Ng, Catalytic conversion of brown grease to green diesel via decarboxylation over activated carbon supported palladium catalyst, Ind. Eng. Chem. Res. 52(2013) 11527-11536. [9] P. Blanco, Diseño de una planta piloto de refinación de aceites vegetales, Chem. Eng. Sci. (2007) 41-136. [10] W. Greyt, M. Kellens, V. Gibon, Palm oil refining, Eur Jounal Lipid Sci. Technol. 109(2007) 315-335. [11] P.A.T. Swoboda, Chemistry of refining, J. Am. Oil Chem. Soc. 62(1985) 287-292. [12] C.K. Ooi, Y.M. Choo, S.C. Yap, A.N. Ma, Refinación del aceite rojo de palma, Refining of red palm oil, Palmas 19(1998) 61-67. [13] H. Wang, J. Male, Y. Wang, Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds, ACS Catal. 3(2013) 1047-1070. [14] S.B. Glisic, J.M. Pajnik, A.M. Orlović, Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production, Appl. Energy 170(2016) 176-185. [15] W. Pérez, J. Marín, J. del Río, J. Peña, L. Rios, Upgrading of palm oil renewable diesel through hydroisomerization and formulation of an optimal blend, Fuel 209(2017) 442-448. [16] A. Guzman, J.E. Torres, L.P. Prada, M.L. Nuñez, Hydroprocessing of crude palm oil at pilot plant scale, Catal. Today 156(2010) 38-43. [17] S.R. Yenumala, P. Kumar, S.K. Maity, D. Shee, Hydrodeoxygenation of karanja oil using ordered mesoporous nickel-alumina composite catalysts, Catal. Today 38(2020) 48-54. [18] F. Wang, J. Xu, J. Jiang, P. Liu, F. Li, J. Ye, M. Zhou, Hydrotreatment of vegetable oil for green diesel over activated carbon supported molybdenum carbide catalyst, Fuel 216(2018) 738-746. [19] P. Reangchim, T. Saelee, V. Itthibenchapong, A. Junkaew, N. Chanlek, A. Eiad-Ua, N. Kungwan, K. Faungnawakij, Role of Sn promoter in Ni/Al2O3 catalyst for the deoxygenation of stearic acid and coke formation:Experimental and theoretical studies, Catal. Sci. Technol. 9(2019) 3361-3372. [20] G. Marroquín, J. Ancheyta, J.A.I. Díaz, On the effect of reaction conditions on liquid phase sulfiding of a NiMo HDS catalyst, Catal. Today 98(2004) 75-81. [21] E. Laurent, B. Delmon, Deactivation of a sulfided NiMo/y-A1203 during the hydrodeoxygenation of bio-oils:Influence of a high water pressure, Stud. Surf. Sci. Catal. 88(1994) 459-466. [22] M.J. Angeles, C. Leyva, J. Ancheyta, S. Ramírez, A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst, Catal. Today 220-222(2014) 274-294. [23] A. Cybulski, J.A. Moulijn, Structured Catalysts and Reactors (2nd Edition), CRC Press, Boca Raton, 2005. [24] A. Quitian, J. Ancheyta, Experimental methods for developing kinetic models for hydrocracking reactions with slurry-phase catalyst using batch reactors, Energy Fuel 30(2016) 4419-4437. [25] J. Moonier, G. Tourigny, W. Douglas, R. Soveran, A. Wong, M. Stumborg, US Pat., 5705722(1999). [26] K.C. Kwon, H. Mayfield, T. Marolla, B. Nichols, M. Mashburn, Catalytic deoxygenation of liquid biomass for hydrocarbon fuels, Renew. Energy 36(2011) 907-915. [27] G.N. da Rocha Filho, D. Brodzki, G. Djéga-Mariadassou, Formation of alkanes, alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils, Fuel 72(1993) 543-549. [28] H. Zhang, H. Lin, W. Wang, Y. Zheng, P. Hu, Hydroprocessing of waste cooking oil over a dispersed nano catalyst:Kinetics study and temperature effect, Appl. Catal. B Environ. 150-151(2014) 238-348. [29] R. Sotelo-Boyas, Y. Liu, T. Minowa, Renewable diesel production from the hydrotreating of rapeseed oil with Pt/zeolite and NiMo/Al2O3 catalysts, Ind. Eng. Chem. Res. 50(2011) 2791-2799. [30] H. Zhang, H. Lin, Y. Zheng, The role of cobalt and nickel in deoxygenation of vegetable oils, Appl. Catal. B Environ. 160-161(2014) 415-422. [31] S.K. Kim, S. Brand, H.S. Lee, Y. Kim, J. Kim, Production of renewable diesel by hydrotreatment of soybean oil:Effect of reaction parameters, Chem. Eng. J. 228(2013) 114-123. [32] M. Nasikin, B.H. Susanto, M.A. Hirsaman, A. Wijanarko, Biogasoline from Palm Oil by simultaneous cracking and hydrogenation reaction over NiMo/zeolite catalyst, World Appl. Sci. J. 5(2009) 74-79. [33] B. Veriansyah, J. Young, S. Ki, S. Hong, Y. Jun, J. Sung, Y. Shu, S. Oh, J. Kim, Production of renewable diesel by hydroprocessing of soybean oil:Effect of catalysts, Fuel 94(2012) 578-585. [34] M. Grilc, B. Likozar, J. Levec, Hydrotreatment of solvolytically liquefied lignocellulosic biomass over NiMo/Al2O3 catalyst:Reaction mechanism, hydrodeoxygenation kinetics and mass transfer model based on FTIR, Biomass Bioenergy 63(2014) 300-312. [35] E. Furimsky, Catalytic hydrodeoxygenation, Appl. Catal. A Gen. 199(2000) 147-190. [36] M. Grilc, B. Likozar, J. Levec, Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts, Appl. Catal. B Environ. 150-151(2014) 275-287. [37] S. Kovács, T. Kasza, A. Thernesz, I.W. Horváth, J. Hancsók, Fuel production by hydrotreating of triglycerides on NiMo/Al2O3/F catalyst, Chem. Eng. J. 176-177(2011) 237-243. [38] G. Félix, A. Quitian, E. Rodríguez, J. Ancheyta, F. Trejo, Methods to calculate hydrogen consumption during hydrocracking experiments in batch reactors, Energy Fuel 31(2017) 11690-11697. [39] L.C. Castañeda, J.A.D. Muñoz, J. Ancheyta, Comparison of approaches to determine hydrogen consumption during catalytic hydrotreating of oil fractions, Fuel 90(2011) 3593-3601. [40] R. Kaewmeesri, A. Srifa, V. Itthibenchapong, K. Faungnawakij, Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3:Effect of water and free fatty acid content, Energy Fuel 29(2015) 833-840. |