[1] P. Putnik, Z. Kresoja, T. Bosiljkov, A.R. Jambrak, F.J. Barba, J.M. Lorenzo, S. Roohinejad, D. Granato, I. Zuntar, D.B. Kovacevic, Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality:A review, Food Chem. 279(2019) 150-161. [2] K. Brijwani, A. Rigdon, P.V. Vadlani, Fungal laccases:Production, function, and applications in food processing, Enzym. Res. 2010(2010) 149748-149710. [3] T. Ozdal, E. Capanoglu, F. Altay, A review on protein-phenolic interactions and associated changes, Food Res. Int. 51(2013) 954-970. [4] X. Jiang, P. Sun, L. Xu, Y. Xue, H. Zhang, W. Zhu, Platanus orientalis leaves based hierarchical porous carbon microspheres as high efficiency adsorbents for organic dyes removal, Chin. J. Chem. Eng. 28(2020) 254-265. [5] P. Onsekizoglu, Production of high quality clarified pomegranate juice concentrate by membrane processes, J. Membr. Sci. 442(2013) 264-271. [6] M. Friedman, Food browning and its prevention:An overview, J. Agric. Food Chem. 44(1996) 631-653. [7] M. Schroeder, B. Pöllinger-Zierler, N. Aichernig, B. Siegmund, G.M. Guebitz, Enzymatic removal of off-flavors from apple juice, J. Agric. Food Chem. 56(2008) 2485-2489. [8] P. Baldrian, Fungal laccases-Occurrence and properties, FEMS Microbiol. Rev. 30(2006) 215-242. [9] N. Durán, M.A. Rosa, A. D'Annibale, L. Gianfreda, Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports:A review, Enzym. Microb. Technol. 31(2002) 907-931. [10] X. Feng, H. Chen, D. Xue, S. Yao, Enhancement of laccase activity by marine-derived deuteromycete pestalotiopsis sp. J63 with agricultural residues and inducers, Chin. J. Chem. Eng. 21(2013) 1182-1189. [11] C.C.S. Fortes, A.L. Daniel-da-Silva, A.M.R.B. Xavier, A.P.M. Tavares, Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions, Chem. Eng. Process. Process Intensif. 117(2017) 1-8. [12] J. Lin, Q. Wen, S. Chen, X. Le, X. Zhou, L. Huang, Synthesis of amine-functionalized Fe3O4@C nanoparticles for laccase immobilization, Int. J. Biol. Macromol. 96(2017) 377-383. [13] B. Dayi, A. Duishemambet Kyzy, H.A. Akdogan, Characterization of recuperating talent of white-rot fungi cells to dye-contaminated soil/water, Chin. J. Chem. Eng. 27(2019) 634-638. [14] C. Pezzella, L. Guarino, A. Piscitelli, How to enjoy laccases, Cell. Mol. Life Sci. 72(2015) 923-940. [15] T.M.D.S. Bezerra, J.C. Bassan, V.T.D.O. Santos, A. Ferraz, R. Monti, Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice, Process Biochem. 50(2015) 417-423. [16] L. Yin, J.Y. Ye, S.B. Kuang, Y.Q. Guan, R. You, Induction, purification, and characterization of a thermo and pH stable laccase from Abortiporus biennis J2 and its application on the clarification of litchi juice, Biosci. Biotechnol. Biochem. 81(2017) 1033-1040. [17] Z. Fathali, S. Rezaei, M.A. Faramarzi, M. Habibi-Rezaei, Catalytic phenol removal using entrapped cross-linked laccase aggregates, Int. J. Biol. Macromol. 122(2019) 359-366. [18] M. Hartmann, X. Kostrov, Immobilization of enzymes on porous silicas benefits and challenges, Chem. Soc. Rev. 42(2013) 6277-6289. [19] Y.W. Bao, X.W. Hua, H.H. Ran, J. Zeng, F.G. Wu, Metal-doped carbon nanoparticles with intrinsic peroxidase-like activity for colorimetric detection of H2O2 and glucose, J. Mater. Chem. B 7(2019) 296-304. [20] S. Lin, Y. Zhang, W. Cao, X. Wang, L. Qin, M. Zhou, H. Wei, Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics, Dalton Trans. 48(2019) 1993-1999. [21] H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes):Next-generation artificial enzymes, Chem. Soc. Rev. 42(2013) 6060-6093. [22] J. Wu, S. Li, H. Wei, Integrated nanozymes:facile preparation and biomedical applications, Chem. Commun. (Camb.) 54(2018) 652-653. [23] A.L. Hu, H.H. Deng, X.Q. Zheng, Y.Y. Wu, X.L. Lin, A.L. Liu, X.H. Xia, H.P. Peng, W. Chen, G.L. Hong, Self-cascade reaction catalyzed by CuO nanoparticle-based dual-functional enzyme mimics, Biosens. Bioelectron. 97(2017) 21-25. [24] Y. Wang, X. Zhu, F. Ding, Y. Liu, L. Yang, P. Zou, Q. Zhao, X. Wang, H. Rao, Colorimetric detection of gallic acid based on the enhanced oxidase-like activity of floral-like magnetic Fe3O4@MnO2, Luminescence 34(2019) 55-63. [25] D.S. Choi, Y. Ni, E. Fernández-Fueyo, M. Lee, F. Hollmann, C.B. Park, Photoelectroenzymatic oxyfunctionalization on flavin-hybridized carbon nanotube electrode platform, ACS Catal. 7(2017) 1563-1567. [26] Y. Huang, C. Liu, F. Pu, Z. Liu, J. Ren, X. Qu, A GO-Se nanocomposite as an antioxidant nanozyme for cytoprotection, Chem. Commun. (Camb.) 53(2017) 3082-3085. [27] Y. Lv, M. Ma, Y. Huang, Y. Xia, Carbon dot nanozymes:how to be close to natural enzymes, Chemistry 25(2019) 954-960. [28] A. Carattino, M. Caldarola, M. Orrit, Gold nanoparticles as absolute nanothermometers, Nano Lett. 18(2018) 874-880. [29] Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, J. He, L. Zhou, C. Zhang, Y. Deng, P. Wang, Z. Zhou, S. Nie, H. Wei, Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues, ACS Nano 11(2017) 5558-5566. [30] L. Gao, K. Fan, X. Yan, Iron oxide nanozyme:a multifunctional enzyme mimetic for biomedical applications, Theranostics 7(2017) 3207-3227. [31] S. Ghosh, P. Roy, N. Karmodak, E.D. Jemmis, G. Mugesh, Nanoisozymes:Crystalfacet-dependent enzyme-mimetic activity of V2O5 nanomaterials, Angew. Chem. Int. Ed. 57(2018) 4510-4515. [32] J. Zhang, T. Wang, L. Gao, S. Perrett, J. Feng, Y. Zhang, L. Nie, N. Gu, D. Yang, X. Yan, J. Zhuang, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol. 2(2007) 577-583. [33] Y. Wang, C. He, W. Li, J. Zhang, Y. Fu, Catalytic performance of oligonucleotide-templated Pt nanozyme evaluated by laccase substrates, Catal. Lett. 147(2017) 2144-2152. [34] H. Liang, F. Lin, Z. Zhang, B. Liu, S. Jiang, Q. Yuan, J. Liu, Multicopper laccase mimicking nanozymes with nucleotides as ligands, ACS Appl. Mater. Interfaces 9(2017) 1352-1360. [35] V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents, Am. J. Enol. Vitic. 16(1965) 144-158. [36] Z. Zhong, S. Pang, Y. Wu, S. Jiang, J. Ouyang, Synthesis and characterization of mesoporous Cu-MOF for laccase immobilization, J. Chem. Technol. Biotechnol. 92(2017) 1841-1847. [37] E. Morita, E. Nakamura, Solid-phase extraction of antipyrine dye for spectrophotometric determination of phenolic compounds in water, Anal. Sci. 27(2011) 489-492. [38] J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li, Y. Zhu, L. Qin, H. Wei, Nanomaterials with enzyme-like characteristics (nanozymes):next-generation artificial enzymes (Ⅱ), Chem. Soc. Rev. 48(2019) 1004-1076. [39] L. Han, H. Zhang, F. Li, Bioinspired nanozymes with pH-independent and metal ionscontrollable activity:field-programmable logic conversion of sole logic gate system, Part. Part. Syst. Charact. 35(2018) 1800207. [40] J. Wang, R. Huang, W. Qi, R. Su, B.P. Binks, Z. He, Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants, Appl. Catal. B Environ. 254(2019) 452-462. [41] S. Ramanathan, E. Elanthamilan, A. Obadiah, A. Durairaj, P. Santhoshkumar, J.P. Merlin, S. Ramasundaram, S. Vasanthkumar, Development of a electrochemical sensor for the detection of 2,4-dichlorophenol using a polymer nanocomposite of rGO, J. Mater. Sci. Mater. Electron. 30(2019) 7150-7162. [42] F.L. Mohd Rasdi, S. Mohamad, N.S. Abdul Manan, H.R. Nodeh, Electrochemical determination of 2,4-dichlorophenol at β-cyclodextrin functionalized ionic liquid modified chemical sensor:voltammetric and amperometric studies, RSC Adv. 6(2016) 1186-1194. [43] Y. Tong, D. Li, J. Huang, C. Zhang, K. Li, L. Ding, A fiber optic sensor for determination of 2,4-dichlorophenol based on oxygen oxidation catalyzed by iron(Ⅲ) tetrasulfophthalocyanine, Bull. Kor. Chem. Soc. 34(2013) 3307-3311. [44] S.R. Yashas, S. Sandeep, B.P. Shivakumar, N.K. Swamy, A matrix of perovskite microseeds and polypyrrole nanotubes tethered laccase/graphite biosensor for sensitive quantification of 2,4-dichlorophenol in wastewater, Anal. Methods 11(2019) 4511-4519. |