Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (2): 291-300.DOI: 10.1016/j.cjche.2020.11.012
Previous Articles Next Articles
Jing Zhao1,2,3, Zhiguang Duan1,2,3, Xiaoxuan Ma1,2,3, Yannan Liu1,2,3, Daidi Fan1,2,3
Received:
2020-10-15
Revised:
2020-11-18
Online:
2021-05-15
Published:
2021-02-28
Contact:
Daidi Fan
Supported by:
Jing Zhao1,2,3, Zhiguang Duan1,2,3, Xiaoxuan Ma1,2,3, Yannan Liu1,2,3, Daidi Fan1,2,3
通讯作者:
Daidi Fan
基金资助:
Jing Zhao, Zhiguang Duan, Xiaoxuan Ma, Yannan Liu, Daidi Fan. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 291-300.
Jing Zhao, Zhiguang Duan, Xiaoxuan Ma, Yannan Liu, Daidi Fan. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers[J]. 中国化学工程学报, 2021, 29(2): 291-300.
[1] A.L. Harvey, R. Edrada-Ebel, R.J. Quinn, The re-emergence of natural products for drug discovery in the genomics era, Nat. Rev. Drug Discov. 14 (2) (2015) 111–129. [2] D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J. Nat. Prod. 83 (3) (2020) 770–803. [3] A.S.T. Wong, C.M. Che, K.W. Leung, Recent advances in ginseng as cancer therapeutics: A functional and mechanistic overview, Nat. Prod. Rep. 32 (2) (2015) 256–272. [4] M. Riaz, N.U. Rahman, M. Zia-Ul-Haq, H.Z.E. Jaffar, R. Manea, Ginseng: A dietary supplement as immune-modulator in various diseases, Trends Food Sci. Tech. 83 (2019) 12–30. [5] J.K. Patra, G. Das, S. Lee, S.S. Kang, H.S. Shin, Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value, Trends Food Sci. Tech. 82 (2018) 89–109. [6] K.W. Leung, A.S. Wong, Pharmacology of ginsenosides: A literature review, Chin. Med. 5 (2010) 20–27. [7] X.H. Xu, T. Li, C.M.V. Fong, X.P. Chen, X.J. Chen, Y.T. Wang, M.Q. Huang, J.J. Lu, Saponins from chinese medicines as anticancer agents, Molecules 21 (10) (2016) 1590–1660. [8] D.H. Kim, Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng, J. Ginseng Res. 36 (1) (2012) 1–15. [9] L.L. Qu, Y.Y. Zhu, Y.N. Liu, H.X. Yang, C.H. Zhu, P. Ma, J.J. Deng, D.D. Fan, Protective effects of ginsenoside Rk3 against chronic alcohol-induced liver injury in mice through inhibition of inflammation, oxidative stress, and apoptosis, Food Chem. Toxicol. 126 (2019) 277–284. [10] Y.N. Liu, D.D. Fan, Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model, Food Funct. 9 (11) (2018) 5513–5527. [11] Y.N. Liu, D.D. Fan, The preparation of ginsenoside Rg5, its antitumor activity against breast cancer cells and its targeting of PI3k, Nutrients 12 (1) (2020) 246–265. [12] Y. Liu, J.J. Deng, D.D. Fan, Ginsenoside rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the ampk/akt signaling pathway, Food Funct. 10 (5) (2019) 2538–2551. [13] Y. Wei, H. Yang, C. Zhu, J. Deng, D. Fan, Hypoglycemic effect of ginsenoside rg5 mediated partly by modulating gut microbiota dysbiosis in diabetic db/db mice, J. Agric. Food Chem. 68 (18) (2020) 5107–5117. [14] B. Wei, Z.G. Duan, C.H. Zhu, J.J. Deng, D.D. Fan, Anti-anemia effects of ginsenoside rk3 and ginsenoside Rh4 on mice with ribavirin-induced anemia, Food Funct. 9 (4) (2018) 2447–2455. [15] J.J. Shao, X.Y. Zheng, L.L. Qu, H. Zhang, H.F. Yuan, J.F. Hui, Y. Mi, P. Ma, D.D. Fan, Ginsenoside Rg5/Rk1 ameliorated sleep via regulating the gabaergic/serotoninergic signaling pathway in a rodent model, Food Funct. 11 (2) (2020) 1245–1257. [16] W. Li, Y. Jiang, Y. Liu, C. Li, D. Fan, Biocatalytic strategies in producing ginsenoside by glycosidase-A review, Chin. J. Biotechnol. 35 (9) (2019) 1590–1606. [17] M.Y. Sun, Y. Ye, L. Xiao, X.Y. Duan, Y.M. Zhang, H. Zhang, Anticancer effects of ginsenoside Rg3 (review), Int. J. Mol. Med. 39 (3) (2017) 507–518. [18] Z.G. Yuan, H. Jiang, X.H. Zhu, X.G. Liu, J.H. Li, Ginsenoside Rg3 promotes cytotoxicity of paclitaxel through inhibiting nf-kappa b signaling and regulating bax/bcl-2 expression on triple-negative breast cancer, Biomed. Pharmacother. 89 (2017) 227–232. [19] J.J. Wang, L.L. Tian, M.N. Khan, L. Zhang, Q. Chen, Y. Zhao, Q. Yan, L. Fu, J.W. Liu, Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-kappa B mediated epithelial-mesenchymal transition and sternness, Cancer Lett. 415 (2018) 73–85. [20] S. Chian, Y. Zhao, M. Xu, X.L. Yu, X. Ke, R.L. Gao, L.M. Yin, Ginsenoside Rd reverses cisplatin resistance in non-small-cell lung cancer A549 cells by downregulating the nuclear factor erythroid 2-related factor 2 pathway, Anticancer Drugs 30 (8) (2019) 838–845. [21] S. Chae, K.A. Kang, W.Y. Chang, M.J. Kim, S.J. Lee, Y.S. Lee, H.S. Kim, D.H. Kim, J. W. Hyun, Effect of compound k, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo, J. Agric. Food Chem. 57 (13) (2009) 5777–5782. [22] K.Q. Zhang, Y.W. Li, Effects of ginsenoside compound k combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in mcf-7 cells of human breast cancer, Pharm. Biol. 54 (4) (2016) 561–568. [23] L. Chen, Y. Meng, Q. Sun, Z.Y. Zhang, X.Q. Guo, X.T. Sheng, G.H. Tai, H.R. Cheng, Y.F. Zhou, Ginsenoside compound K sensitizes human colon cancer cells to trail-induced apoptosis via autophagy-dependent and -independent dr5 upregulation, Cell Death Dis. 7 (2016) e2334. [24] H. Kim, J.H. Lee, J.E. Kim, Y.S. Kim, C.H. Ryu, H.J. Lee, H.M. Kim, H. Jeon, H.J. Won, J.Y. Lee, J. Lee, Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability, J. Ginseng Res. 42 (3) (2018) 361–369. [25] H.J. Won, H.I. Kim, T. Park, H. Kim, K. Jo, H. Jeon, S.J. Ha, J.M. Hyun, A. Jeong, J.S. Kim, Y.J. Park, Y.H. Eo, J. Lee, Non-clinical pharmacokinetic behavior of ginsenosides, J. Ginseng Res. 43 (3) (2019) 354–360. [26] C.A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability, J Pharmacol. Tox. Met. 44 (1) (2000) 235–249. [27] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (1–3) (2001) 3–26. [28] E.S. Swenson, W.J. Curatolo, Intestinal permeability enhancement for proteins, peptides and other polar drugs –mechanisms and potential toxicity, Adv. Drug Deliv. Rev. 8 (1) (1992) 39–92. [29] X.D. Yang, Y.Y. Yang, D.S. Ouyang, G.P. Yang, A review of biotransformation and pharmacology of ginsenoside compound K, Fitoterapia 100 (2015) 208–220. [30] T.X. Qian, Z.W. Cai, R.N.S. Wong, N.K. Mak, Z.H. Jiang, In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg(3), J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 816 (1–2) (2005) 223–232. [31] M. Peng, X.N. Li, T. Zhang, Y. Ding, Y.X. Yi, J. Le, Y.J. Yang, X.J. Chen, Stereoselective pharmacokinetic and metabolism studies of 20(s)-and 20(r)-ginsenoside Rg(3) epimers in rat plasma by liquid chromatographyelectrospray ionization mass spectrometry, J. Pharm. Biomed. Anal. 121 (2016) 215–224. [32] S. Pintusophon, W. Niu, X.N. Duan, O.E. Olaleye, Y.H. Huang, F.Q. Wang, Y.F. Li, J.L. Yang, C. Li, Intravenous formulation of Panax notoginseng root extract: human pharmacokinetics of ginsenosides and potential for perpetrating drug interactions, Acta Pharmacol. Sin. 40 (2019) 1351–1363. [33] Y. Li, H. Wang, R. Wang, X. Lu, Y. Wang, M. Duan, H. Li, X. Fan, S. Wang, Pharmacokinetics, tissue distribution and excretion of saponins after intravenous administration of ShenMai Injection in rats, J. Chromatogr. B 1128 (1) (2019) 121777–121787. [34] J. Ma, X.L. Li, J.F. Tang, X.L. Meng, F. Meng, P. Liu, Pharmacokinetic study on ginsenoside Rg1 and Re in rats following intravenous and oral administration of “Shenmai” injection, Int. J Clin. Exp. Med. 9 (5) (2012) 8355–8361. [35] L. Yang, S.J. Xu, Z.F. Wu, Y.M. Liu, X. Zeng, Determination of ginsenoside-Rg1 in human plasma and its application to pharmacokinetic studies following intravenous administration of ‘Shenmai’ injection, Phytother. Res. 23 (2009) 65–71. [36] W. Tang, Y. Zhang, J. Gao, X. Ding, S. Gao, The anti-fatigue effect of 20(R)-ginsenoside Rg3 in mice by intranasally administration, Biol. Pharm. Bull. 31 (11) (2008) 2024–2027. [37] K. Law, X. Sha, X. Fang, Preparation of Panax notoginseng saponins ionsensitive in situ nasal gel, Chin. Tradition. Herb. Drug. 42 (7) (2011) 1299–1304. [38] J. Xiong, M. Sun, J. Guo, L. Huang, S. Wang, B. Meng, Q. Ping, Enhancement by adrenaline of ginsenoside Rg1 transport in Caco-2 cells and oral absorption in rats, J. Pharm. Pharmacol. 61 (3) (2009) 347–352. [39] X.M. Chen, J.B. Zhu, W.D. Sun, L.J. Zhang, Effect of absorption enhancer of borneol on Ginsenoside Rg1 and the nasal ciliotoxicity, Chin. Pharm. J. 41 (4) (2006) 261–264. [40] M. Zhou, Y. Gu, S.Q. Zhang, R.S. Xia, K.Q. Fang, Effects of azone on transdermal absorption of ginsenoside Rg1 and minoxidil, J. Fourth Mil. Med. Univ. 25 (10) (2004) 958–960. [41] D. Zhang, C. Wang, W. Han, X.Y. Yang, Y. Qu, X.M. Cui, Y. Yang, Promotion on in vitro percutaneous absorption of trace ginsenoside Rh1 using imidazole type-ionic liquids, Chin. Tradition. Herb. Drug. 45 (20) (2014) 2917–2923. [42] B.S. Pattni, V.V. Chupin, V.P. Torchilin, New developments in liposomal drug delivery, Chem. Rev. 115 (19) (2015) 10938–10966. [43] X. Jin, J.P. Zhou, Z.H. Zhang, H.X. Lv, The combined administration of parthenolide and ginsenoside ck in long circulation liposomes with targeted tlyp-1 ligand induce mitochondria-mediated lung cancer apoptosis, Artif. Cell Nanomed. Biotechnol. 46 (2018) S931–S942. [44] L. Yang, J. Xin, Z.H. Zhang, H.M. Yan, J. Wang, E. Sun, J. Hou, X.B. Jia, H.X. Lv, TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: Formulation design and its evaluation in vitro and in vivo, J Pharm. Pharmacol. 68 (9) (2016) 1109–1118. [45] J. Xiong, J.X. Guo, L.S. Huang, B.Y. Meng, Q.N. Ping, Self-micelle formation and the incorporation of lipid in the formulation affect the intestinal absorption of panax notoginseng, Int. J. Pharmaceut. 360 (1–2) (2008) 191–196. [46] L. Dai, K.F. Liu, C.L. Si, L.Y. Wang, J. Liu, J. He, J.D. Lei, Ginsenoside nanoparticle: A new green drug delivery system, J. Mater. Chem. B 4 (3) (2016) 529–538. [47] X.Y. Zhou, D. Qu, M. Guo, C. Fan, T. Zhou, Y. Ling, Preliminary study on fabrication, characterization and synergistic anti-lung cancer effects of selfassembled micelles of covalently conjugated celastrol-polyethylene glycolginsenoside Rh2, Drug Deliv. 24 (1) (2017) 834–845. [48] L. Yang, Z.H. Zhang, J. Hou, X. Jin, Z.C. Ke, D. Liu, M. Du, X.B. Jia, H.X. Lv, Targeted delivery of ginsenoside compound K using TPGS/PEG-PCL mixed micelles for effective treatment of lung cancer, Int. J. Nanomed. 12 (2017) 7653–7667. [49] X.M. Su, D.S. Zhang, H.W. Zhang, K.Y. Zhao, W.S. Hou, Preparation and characterization of angiopep-2 functionalized ginsenoside-rg3 loaded nanoparticles and the effect on c6 glioma cells, Pharmaceut. Dev. Technol. 25 (3) (2020) 385–395. [50] J.M. Zhan, Y.Y. Jiang, Y.P. Li, W.B. Li, J. Zhou, J.W. Chen, Z. Shang, Q. Gu, W. Wang, T. Shen, W.C. Hu, Micelles modified with a chitosan-derived homing peptide for targeted intracellular delivery of ginsenoside compound k to liver cancer cells, Carbohyd. Polym. 230 (2020) 115576–115588. [51] Y.N. Dong, R.Z. Fu, J. Yang, P. Ma, L.H. Liang, Y. Mi, D.D. Fan, Folic acid-modified ginsenoside Rg5-loaded bovine serum albumin nanoparticles for targeted cancer therapy in vitro and in vivo, Int. J. Nanomed. 14 (2019) 6971–6988. [52] R. Yang, D.Z. Chen, M.F. Li, F.Q. Miao, P.D. Liu, Q.S. Tang, 20 (s)-ginsenoside Rg3-loaded magnetic human serum albumin nanospheres applied to hela cervical cancer cells in vitro, Bio-Med. Mater. Eng. 24 (6) (2014) 1991–1998. [53] Y. Park, A.R. Im, E.J. Joo, J. Lee, H.G. Park, Y.H. Kang, R.J. Linhardt, Y.S. Kim, Conjugation of ginsenoside Rg3 with gold nanoparticles, Bull. Korean Chem. Soc. 32 (1) (2011) 286–290. [54] Y.J. Kim, H. Perumalsamy, J. Markus, S.R. Balusamy, C. Wang, S.H. Kang, S. Lee, S.Y. Park, S. Kim, V. Castro-Aceituno, S.H. Kim, D.C. Yang, Development of Lactobacillus kimchicus DCY51Tmediated gold nanoparticles for delivery of ginsenoside compound K: in vitro photothermal effects and apoptosis detection in cancer cells, Artif. Cell. Nanomed. Biotech. 47 (1) (2019) 30–44. [55] Z.G. Ren, X.M. Chen, L.J. Hong, X.X. Zhao, G.Y. Cui, A. Li, Y. Liu, L.N. Zhou, R.R. Sun, S. Shen, J. Li, J.M. Lou, H.Q. Zhou, J.M. Wang, G.W. Xu, Z.J. Yu, Y.J. Song, X.H. Chen, Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis, Small 16 (2) (2020) 1905233–1905247. [56] L.Y. Cheng, X.M. Sun, B. Li, C.M. Hu, H.L. Yang, Y.G. Zhang, W.G. Cui, Electrospun ginsenoside Rg3/poly(lactic-co-glycolic acid) fibers coated with hyaluronic acid for repairing and inhibiting hypertrophic scars, J. Mater. Chem. B 1 (35) (2013) 4428–4437. [57] X.M. Sun, L.Y. Cheng, W.K. Zhu, C.M. Hu, R. Jin, B.S. Sun, Y.M. Shi, Y.G. Zhang, W. G. Cui, Use of ginsenoside rg3-loaded electrospun plga fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin, Colloid. Surf. B-Biointerfaces 115 (2014) 61–70. [58] L.Y. Cheng, X.M. Sun, X. Zhao, L. Wang, J. Yu, G.Q. Pan, B. Li, H.L. Yang, Y.G. Zhang, W.G. Cui, Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars, Biomaterials 83 (2016) 169–181. [59] T. Xu, R. Yang, X. Ma, W. Chen, S. Liu, X. Liu, X. Cai, H. Xu, B. Chi, Bionic poly (gamma-glutamic acid) electrospun fibrous scaffolds for preventing hypertrophic scars, Adv. Healthc. Mater. 8 (13) (2019) e1900123. [60] T. Zheng, J.J. Huang, Y.G. Jiang, Q.Q. Tang, Y. Liu, Z.J. Xu, X.W. Wu, J.N. Ren, Sandwich-structure hydrogels implement on-demand release of multiple therapeutic drugs for infected wounds, RSC Adv. 9 (72) (2019) 42489–42497. [61] M.H. Sun, C.N. Zhu, J.Y. Long, C. Lu, X. Pan, C.B. Wu, PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat staphylococcus aureus-induced skin infections, Drug Deliv. 27 (1) (2020) 632–641. [62] K.T. Kim, M.H. Kim, J.H. Park, J. Younglee, H.J. Cho, I.S. Yoon, D.D. Kim, Microemulsion-based hydrogels for enhancing epidermal/dermal deposition of topically administered 20(s)-protopanaxadiol: In vitro and in vivo evaluation studies, J. Ginseng Res. 42 (4) (2018) 512–523. [63] Y.R. Zheng, Z.Z. Feng, C.G. You, Y.Y. Jin, X.L. Hu, X.G. Wang, C.M. Han, In vitro evaluation of panax notoginseng Rg1 released from collagen/chitosan-gelatin microsphere scaffolds for angiogenesis, Biomed. Eng. Online 12 (2013) 134–150. [64] V.R. Akoev, R.E. Elemesov, B.S. Abdrasilov, Y.A. Kim, H.J. Park, Effects of triterpenoid glycosides of the dammaran series and their aglicons on phase transitions of dipalmitoylphosphatidylcholane, Biologicheskie Membrany 13 (6) (1996) 605–611. [65] C. Hong, D. Wang, J.M. Liang, Y.Z. Guo, Y. Zhu, J.X. Xia, J. Qin, H.X. Zhan, J.X. Wang, Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer, Theranostics 9 (15) (2019) 4437–4449. [66] M.S. Li, J. Lan, X.F. Li, M. Xin, H. Wang, F. Zhang, X.H. Lu, Z.F. Zhuang, X.G. Wu, Novel ultra-small micelles based on ginsenoside rb1: A potential nanoplatform for ocular drug delivery, Drug Deliv. 26 (1) (2019) 481–489. [67] R. Mathiyalagan, S. Subramaniyam, Y.J. Kim, S. Natarajan, J.W. Min, S.Y. Kim, D. C. Yang, Synthesis and pharmacokinetic characterization of a ph-sensitive polyethylene glycol ginsenoside CK (PEG-CK) conjugate, Biosci. Biotechnol. Biochem. 78 (3) (2014) 466–468. [68] B. Zhang, X.M. Zhu, J.N. Hu, H. Ye, T. Luo, X.R. Liu, H.Y. Li, W. Li, Y.N. Zheng, Z.Y. Deng, Absorption mechanism of ginsenoside compound k and its butyl and octyl ester prodrugs in Caco-2 cells, J. Agric. Food Chem. 60 (41) (2012) 10278–10284. [69] S. Biswas, P. Kumari, P.M. Lakhani, B. Ghosh, Recent advances in polymeric micelles for anti-cancer drug delivery, Eur. J. Pharm. Sci. 83 (2016) 184–202. [70] S. Voruganti, J.J. Qin, S. Sarkar, S. Nag, I.A. Walbi, S. Wang, Y.Q. Zhao, W. Wang, R.W. Zhang, Oral nano-delivery of anticancer ginsenoside 25-och3-ppd, a natural inhibitor of the mdm2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action, Oncotarget 6 (25) (2015) 21379–21394. [71] J.J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: Progress, challenges and opportunities, Nat. Rev. Cancer 17 (1) (2017) 20–37. [72] J.M. Zhang, Y.J. Wang, Y.Y. Jiang, T.W. Liu, Y.Y. Luo, E.J. Diao, Y.F. Cao, L. Chen, L. Zhang, Q. Gu, J.Y. Zhou, F.T. Sun, W.C. Zheng, J.X. Liu, X.Q. Li, W.C. Hu, Enhanced cytotoxic and apoptotic potential in hepatic carcinoma cells of chitosan nanoparticles loaded with ginsenoside compound K, Carbohyd. Polym. 198 (2018) 537–545. [73] M.T. Larsen, M. Kuhlmann, M.L. Hvam, K.A. Howard, Albumin-based drug delivery: Harnessing nature to cure disease, Mol. Cell. Ther. 4 (2016) 3–3. [74] Y.L. Tan, H.K. Ho, Navigating albumin-based nanoparticles through various drug delivery routes, Drug Discov. Today 23 (5) (2018) 1108–1114. [75] D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Nanoparticle-based medicines: A review of fda-approved materials and clinical trials to date, Pharmaceut. Res. 33 (10) (2016) 2373–2387. [76] N. Khlebtsov, L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies, Chem. Soc. Rev. 40 (3) (2011) 1647–1671. [77] A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems, Ann. Rev. Biomed. Eng. 14 (2012) 1–16. [78] L.Y. Cheng, X.M. Sun, C.M. Hu, R. Jin, B.S. Sun, Y.M. Shi, L. Zhang, W.G. Cui, Y.G. Zhang, In vivo inhibition of hypertrophic scars by implantable ginsenosideRg3-loaded electrospun fibrous membranes, Acta Biomater. 9 (12) (2013) 9461–9473. [79] J.J. Xue, T. Wu, Y.Q. Dai, Y.N. Xia, Electrospinning and electrospun nanofibers: Methods, materials, and applications, Chem. Rev. 119 (8) (2019) 5298–5415. |
[1] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[2] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[3] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[4] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[5] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 144-152. |
[6] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 170-180. |
[7] | Baolong Niu, Min Li, Jianhong Jia, Lixuan Ren, Xin Gang, Bin Nie, Yanying Fan, Xiaojie Lian, Wenfeng Li. Preparation and functional study of pH-sensitive amorphous calcium phosphate nanocarriers [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 244-252. |
[8] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[9] | Dongze Ma, Ye Tian, Tiefei He, Xiaobiao Zhu. Preparation of novel magnetic nanoparticles as draw solutes in forward osmosis desalination [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 223-230. |
[10] | Chen Gu, Wenqiang Weng, Cong Lu, Peng Tan, Yao Jiang, Qiang Zhang, Xiaoqin Liu, Linbing Sun. Decorating MXene with tiny ZIF-8 nanoparticles: An effective approach to construct composites for water pollutant removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 42-48. |
[11] | Yaping Wang, Songyue Cheng, Wendi Fan, Yikun Jiang, Jie Yang, Zaizai Tong, Guohua Jiang. Dual responsive block copolymer coated hollow mesoporous silica nanoparticles for glucose-mediated transcutaneous drug delivery [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 35-42. |
[12] | Mohamed A. Almaradhi, Hassan M.A. Hassan, Mosaed S. Alhumaimess. Fe3O4-carbon spheres core–shell supported palladium nanoparticles: A robust and recyclable catalyst for suzuki coupling reaction [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 75-85. |
[13] | Yiqing Chen, Xin Huang, Suping Ding, Yaoguang Feng, Na Wang, Hongxun Hao. Application of functionalized magnetic silica nanoparticles for selective induction of three coumarin metastable polymorphs [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 155-167. |
[14] | Hongbin Shi, Qing Liu, Xiaofeng Dai, Teng Zhang, Yuling Shi, Tao Wang. Magnetic graphene oxide-anchored Ni/Cu nanoparticles with a Cu-rich surface for transfer hydrogenation of nitroaromatics [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 235-246. |
[15] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 331
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 233
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||