[1] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mat. 7 (2008) 845-854. [2] A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond, Chem. Soc. Rev. 48 (2019) 1272-1341. [3] P.K. Adusei, S. Gbordzoe, S.N. Kanakaraj, Y.Y. Hsieh, N.T. Alvarez, Y. Fang, K. Johnson, C. McConnell, V. Shanov, Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers, J. Energy Chem. 40 (2020) 120-131. [4] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484-7539. [5] D.E. Jiang, J. Wu, Microscopic insights into the electrochemical behavior of nonaqueous electrolytes in electric double-layer capacitors, J. Phys. Chem. Lett. 4 (2013) 1260-1267. [6] Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors, Chem. Soc. Rev. 44 (2015) 3639-3665. [7] M.V. Fedorov, A.A. Kornyshev, Ionic liquids at electrified interfaces, Chem. Rev. 114 (2014) 2978-3036. [8] E. Frackowiak, Q. Abbas, F. Béguin, Carbon/carbon supercapacitors, J. Energy Chem. 22 (2013) 226-240. [9] G. Feng, J.S. Zhang, R. Qiao, Microstructure and capacitance of the electrical double layers at the interface of ionic liquids and planar electrodes, J. Phys. Chem. C. 113 (2009) 4549-4559. [10] C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor, J. A. Chem. Soc. 130 (2008) 2730-2731. [11] R. Burt, G. Birkett, X.S. Zhao, A review of molecular modelling of electric double layer capacitors, Phys. Chem. Chem. Phys. 16 (2014) 6519-6538. [12] P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon-electrolyte systems, Acc. Chem. Res. 46 (2013) 1094-1103. [13] Q. Dou, L. Liu, B. Yang, J. Lang, X. Yan, Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors, Nat. Commun. 8 (2017) 2188. [14] C. Lian, M. Janssen, H. Liu, R. van Roij, Blessing and Curse: How a supercapacitor’s large capacitance causes its slow charging, Phys. Rev. Lett. 124 (2020) 076001. [15] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313 (2006) 1760. [16] T.A. Centeno, O. Sereda, F. Stoeckli, Capacitance in carbon pores of 0.7 to 15 nm: a regular pattern, Phys. Chem. Chem. Phys. 13 (2011) 12403-12406. [17] A. García-Gómez, G. Moreno-Fernández, B. Lobato, T.A. Centeno, Constant capacitance in nanopores of carbon monoliths, Phys. Chem. Chem. Phys. 17 (2015) 15687-15690. [18] W. Smythe, Static and Dynamic Electricity, 2rd ed., McGraw-Hill, NK, 1950. [19] J. Huang, B.G. Sumpter, V. Meunier, Theoretical model for nanoporous carbon supercapacitors, Angew. Chem. Int. Ed. 47 (2008) 520-524. [20] J. Huang, B.G. Sumpter, V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes, Chem. A Eur. J. 14 (2008) 6614-6626. [21] G. Feng, R. Qiao, J. Huang, B.G. Sumpter, V. Meunier, Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance, ACS Nano 4 (2010) 2382-2390. [22] S. Kondrat, A. Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes, J. Phys.: Condens. Matter. 23 (2011) 022201. [23] S. Kondrat, N. Georgi, M.V. Fedorov, A.A. Kornyshev, A superionic state in nanoporous double-layer capacitors: insights from Monte Carlo simulations, Phys. Chem. Chem. Phys. 13 (2011) 11359-11366. [24] G. Feng, D. Jiang, P.T. Cummings, Curvature effect on the capacitance of electric double layers at ionic liquid/onion-like carbon interfaces, J. Chem. Theory Comput. 8 (2012) 1058-1063. [25] P. Wu, J. Huang, V. Meunier, B.G. Sumpter, R. Qiao, Complex capacitance scaling in ionic liquids-filled nanopores, ACS Nano 5 (2011) 9044-9051. [26] G. Feng, P.T. Cummings, Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size, J. Phys. Chem. Lett. 2 (2011) 2859-2864. [27] E. Paek, A.J. Pak, G.S. Hwang, Curvature effects on the interfacial capacitance of carbon nanotubes in an ionic liquid, J. Phys. Chem. C. 117 (2013) 23539-23546. [28] Y.X. Yu, J.Z. Wu, G.H. Gao, Ionic distribution, electrostatic potential and zeta potential at electrochemical interfaces, Chin. J. Chem. Eng. 12 (2004) 688-695. [29] Z.D. Li, J.Z. Wu, Density functional theory for planar electric double layers: Closing the gap between simple and polyelectrolytes, J. Phys. Chem. B 7434-7487 (2006). [30] K. Wang, Y.X. Yu, G.H. Gao, Density functional study on the structural and thermodynamic properties of aqueous DNA-electrolyte solution in the framework of cell model, J. Chem. Phys. 128 (2008) 185101. [31] K. Wang, Y.X. Yu, G.H. Gao, G.S. Luo, Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems, The J. Chem. Phys. 123 (2005) 234904. [32] B. Peng, Y.X. Yu, Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: A partially perturbative density functional theory study, J. Chem. Phys. 131 (2009) 134703. [33] Y.X. Yu, J. Wu, G.H. Gao, Density-functional theory of spherical electric double layers and f potentials of colloidal particles in restricted-primitive-model electrolyte solutions, J. Chem. Phys. 120 (2004) 7223-7233. [34] K. Yan-Shuang, W. Hai-Jun, Density functional theory approach for charged hard sphere fluids confined in spherical micro-cavity, Chin. Phys. Lett. 26 (2009) 126102. [35] J. Forsman, C.E. Woodward, M. Trulsson, A classical density functional theory of ionic liquids, J. Phys. Chem. B. 115 (2011) 4606-4612. [36] R. Szparaga, C.E. Woodward, J. Forsman, Theoretical prediction of the capacitance of ionic liquid films, J. Phys. Chem. C. 116 (2012) 15946-15951. [37] G. Shrivastav, R.C. Remsing, H.K. Kashyap, Capillary evaporation of the ionic liquid [EMIM][BF4] in nanoscale solvophobic confinement, J. Chem. Phys. 148 (2018) 193810. [38] K. Liu, P. Zhang, J. Wu, Does capillary evaporation limit the accessibility of nonaqueous electrolytes to the ultrasmall pores of carbon electrodes?, J. Chem. Phys. 149 (2018) 234708. [39] C. Lian, D. Jiang, H. Liu, J. Wu, A generic model for electric double layers in porous electrodes, J. Phys. Chem. C. 120 (2016) 8704-8710. [40] R. Kumaravadivel, R. Evans, Calculations of the surface energy of simple liquid metals, J. Phys. C: Solid State Phys. 8 (1975) 793-808. [41] R. van Roij, M. Dijkstra, J.P. Hansen, Phase diagram of charge-stabilized colloidal suspensions: van der Waals instability without attractive forces, Phys. Rev. E. 59 (1999) 2010-2025. [42] J. Wu, Density functional theory for chemical engineering: From capillarity to soft materials, AIChE J. 52 (2006) 1169-1193. [43] J. Wu, Z. Li, Density-functional theory for complex fluids, Annu. Rev. Phys. Chem. 58 (2007) 85-112. [44] Y.X. Yu, J. Wu, Structures of hard-sphere fluids from a modified fundamentalmeasure theory, J. Chem. Phys. 117 (2002) 10156-10164. [45] Y. Rosenfeld, Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing, Phys. Rev. Lett. 63 (1989) 980-983. [46] Z. Li, J. Wu, Density functional theory for planar electric double layers: Closing the gap between simple and polyelectrolytes, J. Phys. Chem. B. 110 (2006) 7473-7484. [47] A. Etemad-Shahidi, J. Mahjoobi, Comparison between M5' model tree and neural networks for prediction of significant wave height in Lake Superior, Ocean Eng. 36 (2009) 1175-1181. [48] H. Sui, L. Li, X. Zhu, D. Chen, G. Wu, Modeling the adsorption of PAH mixture in silica nanopores by molecular dynamic simulation combined with machine learning, Chemosphere 144 (2016) 1950-1959. [49] A.A. Kornyshev, Double-layer in ionic liquids: paradigm change?, J. Phys. Chem. B. 111 (2007) 5545-5557. [50] M.Z. Bazant, B.D. Storey, A.A. Kornyshev, Double layer in ionic liquids: Overscreening versus crowding, Phys. Rev. Lett. 106 (2011) 046102. [51] M.V. Fedorov, A.A. Kornyshev, Towards understanding the structure and capacitance of electrical double layer in ionic liquids, Electrochim. Acta. 53 (2008) 6835-6840. [52] D. Jiang, D. Meng, J. Wu, Density functional theory for differential capacitance of planar electric double layers in ionic liquids, Chem. Phys. Lett. 504 (2011) 153-158. [53] A. Reindl, M. Bier, S. Dietrich, Electrolyte solutions at curved electrodes. II. Microscopic approach, J. Chem. Phys. 146 (2017) 154704. |