[1] E. Davani, G. Falcone, C. Teodoriu, D. McCain Jr, HPHT viscosities measurements of mixtures of methane/nitrogen and methane/carbon dioxide, J. Nat. Gas Sci. Eng. 12(2013) 43-55. [2] M. Atilhan, S. Aparicio, R. Alcalde, G. Iglesias-Silva, M. El-Halwagi, K. Hall, Viscosity measurements and data correlation for two synthetic natural gas mixtures, J. Chem. Eng. Data 55(7) (2010) 2498-2504. [3] F.E. Londono, R.A. Archer, T.A. Blasingame, Correlations for hydrocarbon gas viscosity and gas density-validation and correlation of behavior using a largescale database, SPE Reserv. Eval. Eng. 8(06) (2005) 561-572. [4] E. Sanjari, E.N. Lay, M. Peymani, An accurate empirical correlation for predicting natural gas viscosity, J. Nat. Gas Chem. 20(6) (2011) 654-658. [5] Z.F. Shan, W.J. Guang, Advances in chemical viscosity-reducing methods and techniques for viscous crude oils, Oilfield Chem. 3(2001) 024. [6] E.M.E.M. Shokir, H.N. Dmour, Genetic programming (GP)-based model for the viscosity of pure and hydrocarbon gas mixtures, Energy Fuel 23(7) (2009) 3632-3636. [7] A. Fayazi, M. Arabloo, A. Shokrollahi, M. Hadi Zargari, M. Ghazanfari, State-ofthe-art least square support vector machine application for accurate determination of natural gas viscosity, Ind. Eng. Chem. Res. 53(2) (2013) 945-958. [8] F. Gharagheizi, A. Eslamimanesh, M. Sattari, A.H. Mohammadi, D. Richon, Corresponding states method for determination of the viscosity of gases at atmospheric pressure, Ind. Eng. Chem. Res. 51(7) (2012) 3179-3185. [9] K. Ling, W. McCain, E. Davani, G. Falcone, Measurement of gas viscosity at high pressures and high temperatures, in:International Petroleum Technology Conference, Doha, Qatar, 2009. [10] N.L. Carr, R. Kobayashi, D.B. Burrows, Viscosity of hydrocarbon gases under pressure, J. Pet. Technol. 6(10) (1954) 47-55. [11] J. Lohrenz, B.G. Bray, and C.R. Clark, Calculating viscosities of reservoir fluids from their compositions. J. Pet. Technol.. 16(10)(1964)1,171-1,176. [12] J.A. Jossi, L.I. Stiel, G. Thodos, The viscosity of pure substances in the dense gaseous and liquid phases, AIChE J. 8(1) (1962) 59-63. [13] D.E. Dean, L.I. Stiel, The viscosity of nonpolar gas mixtures at moderate and high pressures, AIChE J. 11(3) (1965) 526-532. [14] A.L. Lee, M.H. Gonzalez, B.E. Eakin, The viscosity of natural gases, J. Pet. Technol. 18(08) (1966) 997-1,000. [15] M.B. Standing, Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems, Soc. Pet. Eng. AIME, Dallas, Texas, 1977. [16] M.E. Dempsey, Pathways of enzymic synthesis and conversion to cholesterol of Δ5, 7, 24-cholestatrien-3b-ol and other naturally occurring sterols, J. Biol. Chem. 240(11) (1965) 4176-4188. [17] K. Lucas, The pressure dependence of the viscosity of liquids-a simple estimate, Chemie Ingenieur Technik 53(12) (1981) 959-960. [18] Z. Chen, D. Ruth, On viscosity correlations of natural gas in Annual Technical Meeting, in:Petroleum Society of Canada, 1993. [19] R. Gurbanov, A.M. Dadash-Zade, Calculations of natural gas viscosity under pressure and tempereture, 2, Azerbaijani oil ind, 1986, 44-44. [20] R.P. Sutton, Fundamental PVT calculations for associated and gas-condensate natural gas systems in SPE annual technical conference and exhibition, in:Society of Petroleum Engineers, 2005. [21] E. Heidaryan, J. Moghadasi, M. Rahimi, New correlations to predict natural gas viscosity and compressibility factor, J. Pet. Sci. Eng. 73(1-2) (2010) 67-72. [22] E. Heidaryan, J. Moghadasi, A. Salarabadi, A new and reliable model for predicting methane viscosity at high pressures and high temperatures, J. Nat. Gas Chem. 19(5) (2010) 552-556. [23] S. Hajirezaie, A. Hemmati-Sarapardeh, A.H. Mohammadi, M. Pournik, A. Kamari, A smooth model for the estimation of gas/vapor viscosity of hydrocarbon fluids, J. Nat. Gas Sci. Eng. 26(2015) 1452-1459. [24] A. Dargahi-Zarandi, A. Hemmati-Sarapardeh, S. Hajirezaie, A. Dabir, Atashrouz, Modeling gas/vapor viscosity of hydrocarbon fluids using a hybrid GMDH-type neural network system, J. Mol. Liq. 236(2017) 162-171. [25] A. Rostami, A. Hemmati-Sarapardeh, S. Shamshirband, Rigorous prognostication of natural gas viscosity:smart modeling and comparative study, Fuel. 222(2018) 766-778. [26] C. Sambo, Y. Yin, U. Djuraev, D. Ghosh, Application of adaptive neuro-fuzzy inference system and optimization algorithms for predicting methane gas viscosity at high pressures and high temperatures conditions, Arab. J. Sci. Eng. 43(11) (2018) 6627-6638. [27] A.L. Lee, Viscosity of light hydrocarbons, in:American Petroleum Institute Monograph on API Research Project, 1965. [28] K. Ling, Gas viscosity at High Pressure and High Temperature. PhD Thesis, A&M, Texas, 2010. [29] G. Krotov, A.G. Ivakhnenko, V. Visotsky, Identification of the mathematical model of a complex system by the self-organization method, in:Theoretical Systems Ecology:Advances and Case Studies, Academic Press, New York, 1979. [30] R. Shankar, The Group Method of Data Handling (PhD Thesis), University of Delaware, 1972. [31] Y. Sawaragi, T. Soeda, H. Tamura, T. Yoshimura, S. Ohe, Y. Chujo, H. Ishihara, Statistical prediction of air pollution levels using non-physical models, Automatica. 15(4) (1979) 441-451. [32] Farlow, S., Self-organizing methods in modeling, statistics:Textbooks and monographs. New York and Basel:Marcel Dekker Inc. 54(1984). [33] A. Ivakhnenko, G. Krotov, Multiplicative and additive nonlinear gmdh algorithm with factor degree optimization, Avtomatika. 3(1984) 13-18. [34] A. Ivakhnenko, J. Yurachkovsky, Modeling of Complex Systems by Experimental Data. radio i svyaz publishing house, Moscow, 120 p. Ива хнеко АГ, Юрачковский ЮП Моделированйе слжных ситем по экспериментальным. М.:Радио и свяэь,1987.120 c, 1987 [35] H.R. Madala, A.G. Ivakhnenko, Inductive Learning Algorithms for Complex Systems Modeling, vol. 368, CRC Press, Boca Raton, 1994. [36] A.G. Ivakhnenko, Polynomial theory of complex systems, IEEE Trans. Syst. Man Cyber. (4) (1971) 364-378. [37] S. Atashrouz, G. Pazuki, S.S. Kakhki, A GMDH-type neural network for prediction of water activity in glycol and poly (ethylene glycol) solutions, J. Mol. Liq. 202(2015) 95-100. [38] S. Atashrouz, E. Amini, G. Pazuki, Modeling of surface tension for ionic liquids using group method of data handling, Ionics. 21(6) (2015) 1595-1603. [39] S. Atashrouz, M. Mozaffarian, G. Pazuki, Modeling the thermal conductivity of ionic liquids and ionanofluids based on a group method of data handling and modified Maxwell model, Ind. Eng. Chem. Res. 54(34) (2015) 8600-8610. [40] S. Atashrouz, G. Pazuki, Y. Alimoradi, Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system, Fluid Phase Equilib. 372(2014) 43-48. [41] C. Ferreira, Gene expression programming:A new adaptive algorithm for solving problems, in:arXiv preprint cs/0102027, 2001. [42] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence through Simulated Evolution, John Willey & Sons. Inc., New York, 1966. [43] J. Holland, Adaptation in natural and artificial systems:an introductory analysis with application to biology. Control Artif. Intelligence, 1975. [44] J.R. Koza, J.R. Koza, Genetic Programming:On the Programming of Computers by Means of Natural Selection, vol. 1, MIT Press, Cambridge, 1992. [45] H.P. Schwefel, Numerical Optimization of Computer Models, John Wiley & Sons, Inc., 1981. [46] C. Ferreira, Gene Expression Programming:Mathematical Modeling by an Artificial Intelligence, vol. 21, Springer, Berlin Heidelelberg, 2006. [47] C. Ferreira, U. Gepsoft, What Is Gene Expression Programming, Idea Group Publishing, London, UK, 2008. [48] N. Ryan, D. Hibler, Robust gene expression programming, Proc. Comput. Sci. 6(2011) 165-170. [49] L. Teodorescu, D. Sherwood, High energy physics event selection with gene expression programming, Comput. Phys. Commun. 178(6) (2008) 409-419. [50] C.R. Goodall, 13 Computation Using the QR Decomposition, 1993. [51] R. Ershadnia, M-A Amooie, R. Shams, S. Hajirezaie, Y. Liu, S. Jamshidi, M-R Soltanian, Non-Newtonian fluid flow dynamics in rotating annular media:Physics-based and data-driven modeling, J. Pet. Sci. Eng. 185(2020) 106641. [52] A. Hemmati-Sarapardeh, F. Ameli, B. Dabir, M. Ahmadi, A.H. Mohammadi, On the evaluation of asphaltene precipitation titration data:Modeling and data assessment, Fluid Phase Equilib. 415(2016) 88-100. [53] A.M. Leroy, P.J. Rousseeuw, Robust Regression and Outlier Detection. Wiley Series in Probability and Mathematical Statistics, Wiley, New York, 1987. [54] A.H. Mohammadi, A. Eslamimanesh, F. Gharagheizi, D. Richon, A novel method for evaluation of asphaltene precipitation titration data, Chem. Eng. Sci. 78(2012) 181-185. |