[1] Y. Xu, J. Liu, J. Wang, G. Ma, J. Lin, Y. Yang, Y. Li, C. Zhang, M. Ding, Selective conversion of syngas to aromatics over Fe3O4@MnO2 and hollow HZSM-5 bifunctional catalysts, ACS Catal. 9(6) (2019) 5147-5156. [2] X.F. Yu, J.L. Zhang, X. Wang, Q.X. Ma, X.H. Gao, H.Q. Xia, X.Y. Lai, S.B. Fan, T.S. Zhao, Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity, Appl. Catal. B:Environ. 232(2018) 420-428. [3] Z. Li, L. Zhong, F. Yu, Y. An, Y. Dai, Y. Yang, T. Lin, S. Li, H. Wang, P. Gao, Y. Sun, M. He, Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions, ACS Catal. 7(5) (2017) 3622-3631. [4] P. Zhai, C. Xu, R. Gao, X.i. Liu, M. Li, W. Li, X. Fu, C. Jia, J. Xie, M. Zhao, X. Wang, Y.-W. Li, Q. Zhang, X.-D. Wen, D. Ma, Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst, Angew. Chem. Int. 55(34) (2016) 9902-9907. [5] N. Chen, J. Zhang, Q. Ma, S. Fan, T.-S. Zhao, Hydrothermal preparation of Fe-Zr catalysts for the direct conversion of syngas to light olefins, RSC Adv. 6(41) (2016) 34204-34211. [6] G.R. Johnson, A.T. Bell, Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts, ACS Catal. 6(1) (2016) 100-114. [7] N. Lohitharn, J.G. GoodwinJr, Effect of K promotion of Fe and FeMn FischerTropsch synthesis catalysts:Analysis at the site level using SSITKA, J. Catal. 260(1) (2008) 7-16. [8] Y. Liu, K. Fang, J. Chen, Y. Sun, Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts, Green Chem. 9(6) (2007) 611-615. [9] G. Li, F. Jiao, X. Pan, N.a. Li, D. Miao, L. Li, X. Bao, Role of SAPO-18 acidity in direct syngas conversion to light olefins, ACS Catal. 10(21) (2020) 12370-12375. [10] Y.X. Chen, K. Gong, F. Jiao, X.L. Pan, G.J. Hou, R. Si, X.H. Bao, C-C bond formation in syngas conversion over zinc sites grafted on ZSM-5 zeolite, Angew. Chem. Int. Ed. 59(16) (2020) 6529-6534. [11] N. Li, F. Jiao, X.L. Pan, Y. Ding, J.Y. Feng, X.H. Bao, Size effects of ZnO nanoparticles in bifunctional catalysts for selective syngas conversion, ACS Catal. 9(2) (2019) 960-966. [12] G. Raveendra, C. Li, Y. Cheng, F. Meng, Z. Li, Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts, New J. Chem. 42(6) (2018) 4419-4431. [13] Z. Huang, S. Wang, F. Qin, L. Huang, Y. Yue, W. Hua, M. Qiao, H. He, W. Shen, H. Xu, Ceria-zirconia/zeolite bifunctional catalyst for highly selective conversion of syngas into aromatics, ChemCatChem 10(20) (2018) 4519-4524. [14] S. Dang, P. Gao, Z. Liu, X. Chen, C. Yang, H. Wang, L. Zhong, S. Li, Y. Sun, Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts, J. Catal. 364(2018) 382-393. [15] F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Selective conversion of syngas to light olefins, Science 351(6277) (2016) 1065-1068. [16] H. Pichler, K.H. Ziesecke, The isosynthesis, Bulletin 488, Bureau of Mines, Washington, DC, USA, 1950. [17] R.C.R. Neto, M. Schmal, Synthesis of CeO2 and CeZrO2 mixed oxide nanostructured catalysts for the iso-syntheses reaction, Appl. Catal. A:Gen. 450(2013) 131-142. [18] Y. Li, D. He, Q. Zhu, X. Zhang, B. Xu, Effects of redox properties and acid-base properties on isosynthesis over ZrO2-based catalysts, J. Catal. 221(2) (2004) 584-593. [19] K.I. Maruya, T. Komiya, T. Hayakawa, L.H. Lu, M. Yashima, Active sites on ZrO2 for the formation of isobutene from CO and H2, J. Mol. Catal. A:Chem. 159(1) (2000) 97-102. [20] N.B. Jackson, J.G. Ekerdt, The surface characteristics required for isosynthesis over zirconium dioxide and modified zirconium dioxide, J. Catal. 126(1) (1990) 31-45. [21] K. Pokrovski, K.T. Jung, A.T. Bell, Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia, Langmuir 17(14) (2001) 4297-4303. [22] M.D. Rhodes, A.T. Bell, The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts:Part I. Steady-state studies, J. Catal. 233(1) (2005) 198-209. [23] M.D. Rhodes, K.A. Pokrovski, A.T. Bell, The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts:Part II. Transientresponse infrared studies, J. Catal. 233(1) (2005) 210-220. [24] Y.Y. Zhang, Y. Zhao, T. Otroshchenko, H. Lund, M.M. Pohl, U. Rodemerck, D. Linke, H.J. Jiao, G.Y. Jiang, E.V. Kondratenko, Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C-H bond activation, Nat. Commun. 9(1) (2018) 3794. [25] R.G. Silver, C.J Hou, J.G. Ekerdt, The role of lattice anion vacancies in the activation of CO and as the catalytic site for methanol synthesis over zirconium dioxide and yttria-doped zirconium dioxide, J. Catal. 118(2) (1989) 400-416. [26] Y. Li, D. He, Y. Yuan, Z. Cheng, Q. Zhu, Selective formation of isobutene from CO hydrogenation over zirconium dioxide based catalysts, Energy Fuels 15(6) (2001) 1434-1440. [27] Y. Li, D. He, Y. Yuan, Z. Cheng, Q. Zhu, Influence of acidic and basic properties of ZrO2 based catalysts on isosynthesis, Fuel 81(11-12) (2002) 1611-1617. [28] S. Ge, D. He, Z. Li, A mesoporous Ce0.5Zr0.5O2 solid solution catalyst for CO hydrogenation to iso-C4 hydrocarbons, Catal. Lett. 126(1-2) (2008) 193-199. [29] L. Shi, G. Dong, D. He, Influence of preparation parameters on catalytic performance of Samaria in isosynthesis, Catal. Commun. 8(3) (2007) 359-365. [30] Y.W. Li, D.H. He, Z.H. Zhu, Q.M. Zhu, B.Q. Xu, Properties of Sm2O3-ZrO2 composite oxides and their catalytic performance in isosynthesis, Appl. Catal. A:Gen. 319(2007) 119-127. [31] Y.W. Li, D.H. He, Z.X. Cheng, C.L. Su, J.R. Li, Q.M. Zhu, Effect of calcium salts on isosynthesis over ZrO2 catalysts, J. Mol. Catal. A:Chem. 175(1-2) (2001) 267-275. [32] C.L. Su, D.H. He, J.R. Li, B.Q. Xu, Z.X. Cheng, Q.M. Zhu, Relationship between formation of DME, CH3OHandi-C4H8 in isosynthesis, Stud. Surf. Sci. Catal. 130(2000) 3735-3740. [33] C.L. Su, J.R. Li, D.H. He, Z.X. Cheng, Q.M. Zhu, Synthesis of isobutene from synthesis gas over nanosize zirconia catalysts, Appl. Catal. A:Gen. 202(1) (2000) 81-89. [34] K.-I. Maruya, M. Kawamura, M. Aikawa, M. Hara, T. Arai, Reaction path of methoxy species to isobutene and its dependence on oxide catalysts in CO hydrogenation, J. Organomet. Chem. 551(1-2) (1998) 101-105. [35] K.I. Maruya, A. Takasawa, T. Haraoka, K. Domen, T. Onishi, Role of methoxide species in isobutene formation from CO and H2 over oxide catalysts:Methoxide species in isobutene formation, J. Mol. Catal. A:Chem. 112(1) (1996) 143-151. [36] K. Maruya, M. Hara, J. Kondo, K. Domen, T. Onishi, Key reaction for formation of isobutene over ZrO2 and isoprene over CeO2 in CO hydrogenation, Stud. Surf. Sci. Catal. 101(1996) 1401-1409. [37] C.K. Loong, J.W. Richardson, M. Ozawa, Crystal phases, defects, and dynamics of adsorbed hydroxyl groups and water in pure and lanthanide-modified zirconia:A neutron-scattering study, J. Catal. 157(2) (1995) 636-644. [38] A. Ruiz Puigdollers, S. Tosoni, G. Pacchioni, Turning a nonreducible into a reducible oxide via nanostructuring:Opposite behavior of bulk ZrO2 and ZrO2 nanoparticles toward H2 adsorption, J. Phys. Chem. C 120(28) (2016) 15329-15337. [39] O. Syzgantseva, M. Calatayud, C. Minot, Hydrogen adsorption on monoclinic (111) and (101) ZrO2 surfaces:A periodic ab initio study, J. Phys. Chem. C 114(27) (2010) 11918-11923. [40] J. Kondo, K. Domen, K.-I. Maruya, T. Onishi, Infrared study of molecularly adsorbed H2 on ZrO2, Chem. Phys. Lett. 188(5-6) (1992) 443-445. [41] J. Kondo, Y. Sakata, K. Domen, K.I. Maruya, T. Onishi, Infrared study of hydrogen adsorbed on ZrO2, Faraday Trans. 86(2) (1990) 397-401. [42] M. Anpo, T. Nomura, J. Kondo, K. Domen, K.-I. Maruya, T. Onishi, Photoluminescence and FT-IR studies of the dissociative adsorption of H2 on the active ZrO2 catalyst and its role in the hydrogenation of CO, Res. Chem. Intermed. 13(3) (1990) 195-202. [43] H.M. Torres Galvis, J.H. Bitter, T. Davidian, M. Ruitenbeek, A.I. Dugulan, K.P. de Jong, Iron particle size effects for direct production of lower olefins from synthesis gas, J. Am. Chem. Soc. 134(39) (2012) 16207-16215. [44] J.P. den Breejen, P.B. Radstake, G.L. Bezemer, J.H. Bitter, V. Frøseth, A. Holmen, K.P. de Jong, On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis, J. Am. Chem. Soc. 131(20) (2009) 7197-7203. [45] J. Zhu, G. Zhang, W. Li, X. Zhang, F. Ding, C. Song, X. Guo, Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts, ACS Catal. 10(13) (2020) 7424-7433. [46] W. Kongsuebchart, P. Praserthdam, J. Panpranot, A. Sirisuk, P. Supphasrirongjaroen, C. Satayaprasert, Effect of crystallite size on the surface defect of nano-TiO2 prepared via solvothermal synthesis, J. Cryst. Growth 297(1) (2006) 234-238. [47] Numpilai T., Kidkhunthod P., Cheng C.K., Wattanakit C., Chareonpanich M., Limtrakul J., Witoon T. CO2 hydrogenation to methanol at high reaction temperatures over In2 O3/ZrO2 catalysts:Influence of calcination temperatures of ZrO2 support, Catal. Today (2020) (in press), doi:10.10161j. cattod.2020.03.011. [48] C. Temvuttirojn, Y. Poo-Arporn, N. Chanlek, C.K. Cheng, C.C. Chong, J. Limtrakul, T. Witoon, Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnOx/ZrO2 catalysts, Ind. Eng. Chem. Res. 59(13) (2020) 5525-5535. [49] W. Li, H. Huang, H. Li, W. Zhang, H. Liu, Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation, Langmuir 24(15) (2008) 8358-8366. [50] R. Zhang, H. Liu, D. He, Pure monoclinic ZrO2 prepared by hydrothermal method for isosynthesis, Catal. Commun. 26(2012) 244-247. [51] V. Yashpal, B.V.M. Sharma, Kumar, Issues in determining size of nanocrystalline ceramic particles by X-ray diffraction, Mater. Today:Proc. 2(4-5) (2015) 3534-3538. [52] T. Ungár, The meaning of size obtained from broadened X-ray diffraction peaks, Adv. Eng. Mater. 5(5) (2003) 323-329. [53] H.G. Jiang, M. Rühle, E.J. Lavernia, On the applicability of the X-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials, J. Mater. Res. 14(2) (1999) 549-559. [54] M. Anpo, S.C. Moon, The adsorption and activation of CO molecules on ZrO2 catalysts having low-coordinated surface sites, Res. Chem. Intermed. 25(1) (1999) 1-12. [55] J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys. 2(6) (2000) 1319-1324. [56] F. Hai-Bo, Y. Shao-Yan, Z. Pan-Feng, W. Hong-Yuan, L. Xiang-Lin, J. Chun-Mei, Z. Qin-Sheng, C. Yong-Hai, W. Zhan-Guo, Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and X-ray photoelectron spectroscopy, Chinese Phys. Lett. 24(7) (2007) 2108-2111. [57] M. Zhang, J.F. Zhang, Y.Q. Wu, J.X. Pan, D.Z. Qin, Y.S. Tan, Y.Z. Han, Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide, Appl. Catal. B:Environ. 244(2019) 427-437. [58] C. Xie, D.F. Yan, H. Li, S.Q. Du, W. Chen, Y.Y. Wang, Y.Q. Zou, R. Chen, S.Y. Wang, Defect chemistry in heterogeneous catalysis:Recognition, understanding, and utilization, ACS Catal. 10(19) (2020) 11082-11098. [59] G. Ou, Y.S. Xu, B. Wen, R. Lin, B.H. Ge, Y. Tang, Y.W. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W.X. Chen, J. Li, H. Wu, L.M. Liu, Y.D. Li, Tuning defects in oxides at room temperature by lithium reduction, Nat. Commun. 9(1) (2018) 1302. [60] W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Electron-pinned defect-dipoles for high-performance colossal permittivity materials, Nat. Mater. 12(9) (2013) 821-826. [61] L. Kumari, W.Z. Li, J.M. Xu, R.M. Leblanc, D.Z. Wang, Y.i. Li, H. Guo, J. Zhang, Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties, Cryst. Growth Des. 9(9) (2009) 3874-3880. [62] C. Gionco, M.C. Paganini, E. Giamello, R. Burgess, C. di Valentin, G. Pacchioni, Paramagnetic defects in polycrystalline zirconia:An EPR and DFT study, Chem. Mater. 25(11) (2013) 2243-2253. [63] M.J. Wolf, K.P. McKenna, A.L. Shluger, Hole trapping at surfaces of m-ZrO2 and m-HfO2 nanocrystals, J. Phys. Chem. C 116(49) (2012) 25888-25897. [64] H.M. Benia, P. Myrach, A. Gonchar, T. Risse, N. Nilius, H.J. Freund, Electron trapping in misfit dislocations of MgO thin films, Phys. Rev. B 81(24) (2010) 241415. [65] K.P. McKenna, A.L. Shluger, First-principles calculations of defects near a grain boundary in MgO, Phys. Rev. B 79(22) (2009) 224116. [66] S. Ma, S.-D. Huang, Z.-P. Liu, Dynamic coordination of cations and catalytic selectivity on zinc-chromium oxide alloys during syngas conversion, Nat. Catal. 2(8) (2019) 671-677. |