[1] D. Li, Z. Li, W. Li, Q. Liu, Z. Feng, Z. Fan, Hydrotreating of low temperature coal tar to produce clean liquid fuels, J. Anal. Appl. Pyrolysis 100(2013) 245-252. [2] C. Song, X. Ma, New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization, Appl. Catal. B-Environ. 41(1-2) (2003) 207-238. [3] M. Niu, X. Sun, R. Gao, D. Li, W. Cui, W. Li, Effect of dephenolization on lowtemperature coal tar hydrogenation to produce fuel oil, Energy Fuels 30(2016) 10215-10221. [4] L. Pan, Y. He, M. Niu, Y. Dan, W. Li, Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni-M/SiO2(M=Ce Co, Sn, Fe) bimetallic catalysts, RSC Adv. 9(2019) 21175-21185. [5] H. Wang, J. Male, Y. Wang, Recent advances in hydrotreating of pyrolysis biooil and its oxygen-containing model compounds, ACS Catal. 3(5) (2013) 1047-1070. [6] L. Wang, C. Li, S. Jin, W. Li, C. Liang, Hydrodeoxygenation of dibenzofuran over SBA-15 supported Pt, Pd, and Ru catalysts, Catal. Lett. 144(5) (2014) 809-816. [7] L. Wang, H. Wan, S. Jin, X. Chen, C. Li, C. Liang, Hydrodeoxygenation of dibenzofuran over SiO2, Al2O3/SiO2 and ZrO2/SiO2 supported Pt catalysts, Catal. Sci. Technol. 5(1) (2015) 465-474. [8] J. Zhang, L. Wang, C. Li, S. Jin, C. Liang, Selective hydrogenolysis of dibenzofuran over highly efficient Pt/MgO catalysts to o-phenylphenol, Org. Process Res. Dev. 22(1) (2018) 67-76. [9] J.A. Santana, Y. Ishikawa, DFT calculations of the electrochemical adsorption of sulfuric acid anions on the Pt(110) and Pt(100) surfaces, Electrocatalysis 11(1) (2020) 86-93. [10] X. Niu, L. Wang, J. Chen, Improved performance of SiO2-supported Ni3Ga intermetallic compound for deoxygenation of phenolic compounds, Catal. Commun. 140(2020) 1-6. [11] S. Lu, J. Wu, H. Peng, Y. Chen, Carbon-supported raney nickel catalyst for acetone hydrogenation with high selectivity, Molecules 25(4) (2020) 1-6. [12] R. Wang, Hydrodeoxygenation of dibenzonfuran over bimetallic Ni-Fe catalysts M. Thesis, Taiyuan Univ. of Technol., Taiyuan, 2019. [13] H.W.Peng, Hydrodeoxygenation ofdibenzonfuran over Ni/ordered mesoporous SiO2-Al2O3 catalysts M. Thesis, Taiyuan Univ. of Technol., Taiyuan, 2018. [14] F. Yang, D. Liu, Y. Zhao, H. Wang, Size dependence of vapor phase hydrodeoxygenation of m-cresol on Ni/SiO2 catalysts, ACS Catal. 8(2018) 1672-1682. [15] J. Zhang, B. Fidalgo, D. Shen, X. Zhang, S. Gu, Mechanism of hydrodeoxygenation (HDO) in anisole decomposition over metal loaded Brønsted acid sites:Density functional theory (DFT) study, Mol. Catal. 454(2018) 30-37. [16] J. Zhou, W. An, Z. Wang, X. Jia, Hydrodeoxygenation of phenol over Ni-based bimetallic single-atom surface alloys:Mechanism, kinetics and descriptor, Catal. Sci. Technol. 9(2019) 4314-4326. [17] F. Mittendorfer, J. Hafner, Hydrogenation of benzene on Ni (111) A DFT study, J. Phys. Chem. B 106(51) (2002) 13299-13305. [18] L.M. Ghiringhelli, R. Caputo, L. Delle Site, Phenol near Ni (111), Ni (110), and Ni (221) surfaces in a vertical ring geometry:A density functional study of the oxygen-surface bonding and O H cleavage, Phys. Rev. B 75(2007) 113403. [19] X. Liu, W. An, C.H. Turner, D.E. Resasco, Hydrodeoxygenation of m-cresol over bimetallic NiFe alloys:Kinetics and thermodynamics insight into reaction mechanism, J. Catal. 359(2018) 272-286. [20] J.S. Moon, E.G. Kim, Y.K. Lee, Active sites of Ni2P/SiO2 catalyst for hydrodeoxygenation of guaiacol:A joint XAFS and DFT study, J. Catal. 311(2014) 144-152. [21] S. Gbadamasi, T.H. Ali, L.H. Voon, A.Y. Atta, P. Sudarsanamc, S.K. Bhargavac, S.B. A. Hamid, Promising Ni/Al-SBA-15 catalysts for hydrodeoxygenation of dibenzofuran into fuel grade hydrocarbons:Synergetic effect of Ni and AlSBA-15 support, RSC Adv. 6(2016) 25992-26002. [22] G.W. Watson, R.P.K. Wells, D.J. Willock, G.J. Hutchings, A comparison of the adsorption and diffusion of hydrogen on the (111) surfaces of Ni, Pd, and Pt from density functional theory calculations, J. Phys. Chem. B 105(2001) 4889-4894. [23] W. An, Y. Men, J. Wang, Comparative study on hydrogenation of propanal on Ni (111) and Cu (111) from density functional theory, Appl. Surf. Sci. 394(2017) 333-339. [24] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113(18) (2000) 7756-7764. [25] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. B 77(1996) 3865-3868. [26] X.B. Wang, Z.Z. Xie, L. Guo, Z.Y. Du, W.Y. Li, Mechanism of dibenzofuran hydrodeoxygenation on the surface of Pt (111):A DFT study, Catal. Today 364(2021) 220-228. [27] G. Li, J. Han, H. Wang, X. Zhu, Q. Ge, Role of dissociation of phenol in its selective hydrogenation on Pt (111) and Pd (111), ACS Catal. 5(3) (2015) 2009-2016. [28] M. Li, Y. Song, G. Wang, The mechanism of steam-ethanol reforming on Co13/CeO2-x:A DFT study, ACS Catal. 9(3) (2019) 2355-2367. [29] D. Liu, G. Li, F. Yang, H. Wang, J. Han, X. Zhu, Q. Ge, Competition and cooperation of hydrogenation and deoxygenation reactions during hydrodeoxygenation of phenol on Pt (111), J. Phys. Chem. C 121(22) (2017) 12249-12260. [30] C. Morin, D. Simon, P. Sautet, Intermediates in the hydrogenation of benzene to cyclohexene on Pt (111) and Pd (111):A comparison from DFT calculations, Surf. Sci. 600(6) (2006) 1339-1350. [31] C. Fan, Y.-A. Zhu, X.-G. Zhou, Z.-P. Liu, Catalytic hydrogenation of benzene to cyclohexene on Ru (0001) from density functional theory investigations, Catal. Today 160(2011) 234-241. [32] H.-Y. Ma, Z.-F. Shang, W.-G. Xu, G.-C. Wang, Cyclohexene dehydrogenation to produce benzene on nAu/Pt (100) and nPt/Au (100) (n=0, 1, 2) surfaces from a first-principles study, J. Phys. Chem. C 116(2012) 9996-10008. [33] Y. Yoon, R. Rousseau, R.S. Weber, D. Mei, J.A. Lercher, First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase, J. Am. Chem. Soc. 136(29) (2014) 10287-10298. |