[1] M. Stöcker, Methanol-to-hydrocarbons:catalytic materials and their behavior, Microporous Mesoporous Mater. 29(1999) 3-48. [2] F.J. Keil, Methanol-to-hydrocarbons:Process technology, Microporous Mesoporous Mater. 29(1999) 49-66. [3] A. Coma, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chem. Rev. 95(1995) 559-614. [4] H. Schulz, "Coking" of zeolites during methanol conversion:Basic reactions of the MTO-, MTP- and MTG processes, Catal. Today 154(2010) 183-194. [5] P.L. Benito, A.G. Gayubo, A.T. Aguayo, M. Olazar, J. Bilbao, Deposition and characteristics of coke over a H-ZSM5 zeolite-based catalyst in the MTG process, Ind. Eng. Chem. Res. 35(1996) 3991-3998. [6] S. Ilias, A. Bhan, Mechanism of the catalytic conversion of methanol to hydrocarbons, ACS Catal. 3(2013) 18-31. [7] U. Olsbye, S. Svelle, K.P. Lillerud, Z.H. Wei, Y.Y. Chen, J.F. Li, J.G. Wang, W.B. Fan, The formation and degradation of active species during methanol conversion over protonated zeotype catalysts, Chem. Soc. Rev. 44(2015) 7155-7176. [8] K.Y. Lee, S.W. Lee, S.K. Ihm, Acid strength control in MFI zeolite for the methanol-to-hydrocarbons (MTH) reaction, Ind. Eng. Chem. Res. 53(2014) 10072-10079. [9] V.R. Choudhary, A.K. Kinage, Methanol-to-aromatics conversion over Hgallosilicate (MFI):Influence of Si/Ga ratio, degree of H + exchange, pretreatment conditions, and poisoning of strong acid sites, Zeolites 15(1995) 732-738. [10] A.A. Rownaghi, J. Hedlund, Methanol to gasoline-range hydrocarbons:Influence of nanocrystal size and mesoporosity on catalytic performance and product distribution of ZSM-5, Ind. Eng. Chem. Res. 50(2011) 11872-11878. [11] Q. Zhang, S. Hu, L.L. Zhang, Z. Wu, Y. Gong, T. Dou, Facile fabrication of mesopore-containing ZSM-5 zeolite from spent zeolite catalyst for methanol to propylene reaction, Green Chem. 16(2014) 77-81. [12] Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Mesopore-modified zeolites:Preparation, characterization, and applications, Chem. Rev. 106(2006) 896-910. [13] W. Song, R.E. Justice, C.A. Jones, V.H. Grassian, S.C. Larsen, Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5, Langmuir 20(2004) 8301-8306. [14] D.P. Serrano, J.M. Escolac, P. Pizarroab, Synthesis strategies in the search for hierarchical zeolites, Chem. Soc. Rev. 42(2013) 4004-4035. [15] Y. Wei, T.E. Parmentier, K.P. Jong, J. Zečević, Tailoring and visualizing the pore architecture of hierarchical zeolites, Chem. Soc. Rev. 44(2015) 7234-7261. [16] J.A. Biscardi, E. Iglesia, Structure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM5, Catal. Today 31(1996) 207-231. [17] M. Bjørgen, F. Joensen, M.S. Holm, U. Olsbye, K.P. Lillerud, S. Svelle, Methanol to gasoline over zeolite H-ZSM-5:Improved catalyst performance by treatment with NaOH, Appl. Catal. A Gen. 345(2008) 43-50. [18] S. Inagaki, S. Shinoda, Y. Kaneko, K. Takechi, R. Komatsu, Y. Tsuboi, H. Yamazaki, J.N. Kondo, Y. Kubota, Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins, ACS Catal. 3(2013) 74-78. [19] F. Xiao, S. Zheng, J. Sun, R. Yu, S. Qiu, R. Xu, Dispersion of inorganic salts into zeolites and their pore modification, J. Catal. 176(1998) 474-487. [20] A. Gervasini, Characterization of the textural properties of metal loaded ZSM-5 zeolites, Appl. Catal. A Gen. 180(1999) 71-82. [21] L. Meng, X. Zhu, B. Mezari, R. Pestman, W. Wannapakdee, E.J.M. Hensen, On the role of acidity in bulk and Nanosheet[T] MFI (T=Al3+, Ga3+, Fe3+, B3+) zeolites in the methanol-to-hydrocarbons reaction, Chem. Cat. Chem. 9(2017) 3942-3954. [22] S.P. Yuan, J.G. Wang, Y.W. Li, H. Jiao, Brønsted acidity of isomorphously substituted ZSM-5 by B, Al, Ga, and Fe density functional investigations, J. Phys. Chem. A 106(2002) 8167-8172. [23] M.S. Stave, J.B. Nicholas, Density functional studies of zeolites. 2. Structure and acidity of[T] -ZSM-5 models (T@B, Al, Ga, and Fe), J. Phys. Chem. 99(1995) 15046-15061. [24] C.T.W. Chu, C.D. Chang, Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in[B] -,[Fe] -,[B] -, and[Al] -ZSM-5, J. Phys. Chem. 89(1985) 1569-1571. [25] S.P. Yuan, J.G. Wang, Y.W. Li, S.Y. Peng, Theoretical studies on the properties of acid site in isomorphously substituted ZSM-5, J. Mol. Catal. A Chem. 178(2002) 267-274. [26] M.W. Simon, S.S. Nam, W. Xu, S.L. Suib, J.C. Edwards, C.L. O'Young, Effects of B3+ content of B-ZSM-11 and B-ZSM-5 on acidity and chemical and thermal stability, J. Phys. Chem. 96(1992) 6381-6388. [27] R. Millini, G. Perego, G. Bellussi, Synthesis and characterization of boroncontaining molecular sieves, Top. Catal. 9(1999) 13-34. [28] E. Unneberg, S. Kolboe, H-[B] -ZSM-5 as catalyst for methanol reactions, Appl. Catal. A Gen. 124(1995) 345-354. [29] S.B. Hong, Y.S. Uh, S.I. Woo, J.K. Lee, Thermal stability of[B] ZSM-5 molecular sieve, Korean J. of Chem. Eng. 8(1991) 1-5. [30] Y. Zhai, S. Zhang, L. Zhang, Y. Shang, W. Wang, Y. Song, C. Jiang, Y. Gong, Effect of B and Al distribution in ZSM-5 zeolite on methanol to propylene reaction performance, Acta Phys. -Chim. Sin. 35(2019) 1248-1258. [31] C.O. Arean, G.T. Palomino, F. Geobaldo, A. Zecchina, Characterization of Gallosilicate MFI-type zeolites by IR spectroscopy of adsorbed probe molecules, J. Phys. Chem. 100(1996) 6678-6690. [32] J. Gao, P. Liu, B. Zhang, Z. Liu, L. Han, K. Zhang, Stability of ZSM-5 zeolite catalysts with hierarchical pores form methanol to hydrocarbons, Petrochem Technol 46(2017) 276-282. [33] J. Kim, M. Choi, R. Ryoo, Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process, J. Catal. 269(2010) 219-228. [34] C. Dai, J. Li, A. Zhang, C. Nie, C. Song, X. Guo, Precise control of the size of zeolite B-ZSM-5 based on seed surface crystallization, RSC Adv. 7(2017) 37915-37922. |