[1] T. Sick, A.G. Hufnagel, J. Kampmann, I. Kondofersky, M. Calik, J.M. Rotter, A. Evans, M. Döblinger, S. Herbert, K. Peters, D. Böhm, P. Knochel, D.D. Medina, D. Fattakhova-Rohlfing, T. Bein, Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting, J. Am. Chem. Soc. 140(6) (2018) 2085–2092. [2] J. Li, X. Gao, B. Liu, Q. Feng, X.B. Li, M.Y. Huang, Z. Liu, J. Zhang, C.H. Tung, L.Z. Wu, Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production, J. Am. Chem. Soc. 138(12) (2016) 3954–3957. [3] H. Rajput, E.E. Kwon, S.A. Younis, S. Weon, T.H. Jeon, W. Choi, K.H. Kim, Photoelectrocatalysis as a high-efficiency platform for pulping wastewater treatment and energy production, Chem. Eng. J. 412(2021) 128612. [4] Y. Pihosh, V. Nandal, T. Minegishi, M. Katayama, T. Yamada, K. Seki, M. Sugiyama, K. Domen, Development of a core–shell heterojunction Ta3N5-nanorods/BaTaO2N photoanode for solar water splitting, ACS Energy Lett. 5(8) (2020) 2492–2497. [5] Y. Zhang, H. Lv, Z. Zhang, L. Wang, X. Wu, H. Xu, Stable unbiased photoelectrochemical overall water splitting exceeding 3% efficiency via covalent triazine framework/metal oxide hybrid photoelectrodes, Adv. Mater. 33(15) (2021) e2008264. [6] Y.B. Chen, X.Y. Feng, Y. Liu, X.J. Guan, C. Burda, L.J. Guo, Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting, ACS Energy Lett. 5(3) (2020) 844–866. [7] Y. Hou, F. Zuo, A.P. Dagg, J.K. Liu, P.Y. Feng, Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation, Adv. Mater. 26(29) (2014) 5043–5049. [8] Y. Yang, S.W. Niu, D.D. Han, T. Liu, G.M. Wang, Y. Li, Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting, Adv. Energy Mater. 7(19) (2017) 1700555. [9] X.Y. Zou, Z.X. Sun, Y.H. Hu, G-C3N4-based photoelectrodes for photoelectrochemical water splitting: A review, J. Mater. Chem. A 8(41) (2020) 21474–21502. [10] G.S. Li, Z.C. Lian, W.C. Wang, D.Q. Zhang, H.X. Li, Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis, Nano Energy 19(2016) 446–454. [11] Q.C. Lin, Z.S. Li, T.J. Lin, B.L. Li, X.C. Liao, H.Q. Yu, C.L. Yu, Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production, Chin. J. Chem. Eng. 28(10) (2020) 2677–2688. [12] L.X. Zheng, F. Teng, X.Y. Ye, H.J. Zheng, X.S. Fang, Photo/electrochemical applications of metal sulfide/TiO2 heterostructures, Adv. Energy Mater. 10(1) (2020) 1902355. [13] Q. Pan, A.S. Li, Y.L. Zhang, Y.P. Yang, C.W. Cheng, Rational design of 3D hierarchical ternary SnO2/TiO2/BiVO4 arrays photoanode toward efficient photoelectrochemical performance, Adv. Sci. (Weinh.) 7(3) (2020) 1902235. [14] P. Zhang, L. Yu, X.W.D. Lou, Construction of heterostructured Fe2O3-TiO2 microdumbbells for photoelectrochemical water oxidation, Angew. Chem. Int. Ed. Engl. 57(46) (2018) 15076–15080. [15] X. Zhang, H.L. Guo, G.J. Dong, Y.J. Zhang, G.X. Lu, Y.P. Bi, Homostructural Ta3N5 nanotube/nanoparticle photoanodes for highly efficient solar-driven water splitting, Appl. Catal. B: Environ. 277(2020) 119217. [16] N.T. Thanh Truc, D.T. Tran, N.T. Hanh, T.D. Pham, Novel visible light-driven Nbdoped Ta3N5 sensitized/protected by PPy for efficient overall water splitting, Int. J. Hydrog. Energy 43(33) (2018) 15898–15906. [17] J.B. Pan, B.H. Wang, J.B. Wang, H.Z. Ding, W. Zhou, X. Liu, J.R. Zhang, S. Shen, J.K. Guo, L. Chen, C.T. Au, L.L. Jiang, S.F. Yin, Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation, Angew. Chem. Int. Ed. Engl. 60(3) (2021) 1433–1440. [18] X.F. Zhang, B.Y. Zhang, Z.X. Zuo, M.K. Wang, Y. Shen, N/Si co-doped oriented single crystalline rutile TiO2 nanorods for photoelectrochemical water splitting, J. Mater. Chem. A 3(18) (2015) 10020–10025. [19] L. Lan, Y. Shao, Y.L. Jiao, R.X. Zhang, C. Hardacre, X.L. Fan, Systematic study of H2 production from catalytic photoreforming of cellulose over Pt catalysts supported on TiO2, Chin. J. Chem. Eng. 28(8) (2020) 2084–2091. [20] J.S. Cai, J.Y. Huang, M.Z. Ge, J. Iocozzia, Z.Q. Lin, K.Q. Zhang, Y.K. Lai, Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors, Small 13(19) (2017) 1604240. [21] H.L. Yan, L.Z. Liu, R. Wang, W.X. Zhu, X.Y. Ren, L.P. Luo, X. Zhang, S.J. Luo, X.L. Ai, J.L. Wang, Binary composite MoS2/TiO2 nanotube arrays as a recyclable and efficient photocatalyst for solar water disinfection, Chem. Eng. J. 401(2020) 126052. [22] S.C. Zhang, Z.F. Liu, D. Chen, Z.G. Guo, M.N. Ruan, Oxygen vacancies engineering in TiO2 homojunction/ZnFe-LDH for enhanced photoelectrochemical water oxidation, Chem. Eng. J. 395(2020) 125101. [23] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528) (2001) 269–271. [24] Q. Han, C.B. Wu, H.M. Jiao, R.Y. Xu, Y.Z. Wang, J.J. Xie, Q. Guo, J.W. Tang, Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis, Adv. Mater. 33(9) (2021) 2008180. [25] J.Y. Huang, J.L. Shen, S.H. Li, J.S. Cai, S.C. Wang, Y. Lu, J.H. He, C.J. Carmalt, I.P. Parkin, Y.K. Lai, TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation, J. Mater. Sci. Technol. 39(2020) 28–38. [26] Y. Xiong, L.P. Huang, S. Mahmud, F. Yang, H.H. Liu, Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes, Chin. J. Chem. Eng. 28(5) (2020) 1334–1343. [27] G.Z. Gang, L.Z. Feng, Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting, Dalton Trans. 50(2021) 1983–1989. [28] Y.T. Li, Z.F. Liu, Z.G. Guo, M.N. Ruan, X.F. Li, Y.L. Liu, Efficient WO3 photoanode modified by Pt layer and plasmonic Ag for enhanced charge separation and transfer to promote photoelectrochemical performances, ACS Sustain. Chem. Eng. 7(14) (2019) 12582–12590. [29] S.C. Zhang, Z.F. Liu, W.G. Yan, Z.G. Guo, M.N. Ruan, Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting, Chin. J. Catal. 41(12) (2020) 1884–1893. [30] J. Wang, J. Heo, C.Q. Chen, A.J. Wilson, P.K. Jain, Ammonia oxidation enhanced by photopotential generated by plasmonic excitation of a bimetallic electrocatalyst, Angew. Chem. 132(42) (2020) 18588–18592. [31] H. Yang, Z.H. Wang, Y.Y. Zheng, L.Q. He, C. Zhan, X.H. Lu, Z.Q. Tian, P.P. Fang, Y. X. Tong, Tunable wavelength enhanced photoelectrochemical cells from surface plasmon resonance, J. Am. Chem. Soc. 138(50) (2016) 16204–16207. [32] Y.X. Li, D.P. Hui, Y.Q. Sun, Y. Wang, Z.J. Wu, C.Y. Wang, J.C. Zhao, Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesisinspired electron-proton-transfer mediators, Nat. Commun. 12(1) (2021) 1–12. [33] J.B. Song, L. Pu, J.J. Zhou, B. Duan, H.W. Duan, Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods, ACS Nano 7(11) (2013) 9947–9960. [34] J.B. Song, J.J. Zhou, H.W. Duan, Self-assembled plasmonic vesicles of SERSencoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery, J. Am. Chem. Soc. 134(32) (2012) 13458–13469. [35] Z. Zhang, X.P. Li, C. Zhong, N.Q. Zhao, Y.D. Deng, X.P. Han, W.B. Hu, Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction, Angew. Chem. Int. Ed. Engl. 59(18) (2020) 7245–7250. [36] P. Christopher, H.L. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures, Nat. Chem. 3(6) (2011) 467–472. [37] Z.L. Yin, L.X. Xie, S.S. Cao, Y.G. Xiao, G. Chen, Y. Jiang, W.X. Wei, L.M. Wu, Ag/Ag2O confined visible-light driven catalyst for highly efficient selective hydrogenation of nitroarenes in pure water medium at room temperature, Chem. Eng. J. 394(2020) 125036. [38] Q. Wang, J.S. Cai, G.V. Biesold-Mcgee, J.Y. Huang, Y.H. Ng, H.T. Sun, J.P. Wang, Y. K. Lai, Z.Q. Lin, Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting, Nano Energy 78(2020) 105313. [39] Y.T. Wang, W. Zhou, R.R. Jia, Y.F. Yu, B. Zhang, Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia, Angew. Chem. Int. Ed. 59(13) (2020) 5350–5354. [40] Y.L. Zhao, Y.Q. Wang, G. Xiao, H.J. Su, Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants, Chin. J. Chem. Eng. 27(6) (2019) 1416–1428. [41] H.T. Guan, H.Y. Wang, Y.L. Zhang, C.J. Dong, G. Chen, Y. de Wang, J.B. Xie, Microwave absorption performance of Ni(OH)2 decorating biomass carbon composites from Jackfruit peel, Appl. Surf. Sci. 447(2018) 261–268. [42] S.X. Jiang, M.F. Chen, X.Y. Wang, Y. Zhang, C. Huang, Y.P. Zhang, Y. Wang, Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries, Chem. Eng. J. 355(2019) 478–486. [43] E. Raymundo-Piñero, M. Cadek, F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds, Adv. Funct. Mater. 19(7) (2009) 1032–1039. [44] T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z.H. Zhu, G.Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources 195(3) (2010) 912–918. [45] W.J. Ma, N. Wang, Y.C. Du, P. Xu, B.J. Sun, L.J. Zhang, K.Y.A. Lin, Human-hairderived N, S-doped porous carbon: An enrichment and degradation system for wastewater remediation in the presence of peroxymonosulfate, ACS Sustainable Chem. Eng. 7(2) (2019) 2718–2727. [46] D. Sun, R. Ban, P.H. Zhang, G.H. Wu, J.R. Zhang, J.J. Zhu, Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties, Carbon 64(2013) 424–434. [47] J. Ren, Y.B. Zhou, H.L. Wu, F.Y. Xie, C.G. Xu, D.M. Lin, Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium-sulfur batteries, J. Energy Chem. 30(2019) 121–131. [48] M.P. Yu, R. Li, Y. Tong, Y.R. Li, C. Li, J.D. Hong, G.Q. Shi, A graphene wrapped hair-derived carbon/sulfur composite for lithium–sulfur batteries, J. Mater. Chem. A 3(18) (2015) 9609–9615. [49] B. Pramanick, L.B. Cadenas, D.M. Kim, W. Lee, Y.B. Shim, S.O. Martinez-Chapa, M.J. Madou, H. Hwang, Human hair-derived hollow carbon microfibers for electrochemical sensing, Carbon 107(2016) 872–877. [50] S.J. Guo, X. Zhang, W.L. Zhu, K. He, D. Su, A. Mendoza-Garcia, S.F. Ho, G. Lu, S.H. Sun, Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles, J. Am. Chem. Soc. 136(42) (2014) 15026–15033. [51] G.H. Zhang, S.C. Hou, H. Zhang, W. Zeng, F.L. Yan, C.C. Li, H.G. Duan, Highperformance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode, Adv. Mater. 27(14) (2015) 2400–2405. [52] R.Z. Chen, Y. Du, W.H. Xing, N.P. Xu, The effect of titania structure on Ni/TiO2 catalysts for p-nitrophenol hydrogenation, Chin. J. Chem. Eng. 14(5) (2006) 665–669. [53] S.H. Xu, W.F. Shangguan, J. Yuan, M.X. Chen, J.W. Shi, Preparation and photocatalytic properties of magnetically separable TiO2 supported on nickel ferrite, Chin. J. Chem. Eng. 15(2) (2007) 190–195. [54] T. Kosmala, D. Mosconi, G. Giallongo, G.A. Rizzi, G. Granozzi, Highly efficient MoS2/Ag2S/Ag photoelectrocatalyst obtained from a recycled DVD surface, ACS Sustainable Chem. Eng. 6(6) (2018) 7818–7825. [55] M.Z. Ge, C.Y. Cao, S.H. Li, Y.X. Tang, L.N. Wang, N. Qi, J.Y. Huang, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting, Nanoscale 8(9) (2016) 5226–5234. [56] X.N. Zhang, M.Z. Ge, J.N. Dong, J.Y. Huang, J.H. He, Y.K. Lai, Polydopamineinspired design and synthesis of visible-light-driven Ag NPs@C@elongated TiO2 NTs core-shell nanocomposites for sustainable hydrogen generation, ACS Sustainable Chem. Eng. 7(2018) 558–568. [57] X.M. Ning, D. Yin, Y.P. Fan, Q. Zhang, P.Y. Du, D.X. Zhang, J. Chen, X.Q. Lu, Plasmon-enhanced charge separation and surface reactions based on Agloaded transition-metal hydroxide for photoelectrochemical water oxidation, Adv. Energy Mater. 11(17) (2021) 2100405. [58] S. Hou, X.C. Dai, Y.B. Li, M.H. Huang, T. Li, Z.Q. Wei, Y.H. He, G.C. Xiao, F.X. Xiao, Charge transfer modulation in layer-by-layer-assembled multilayered photoanodes for solar water oxidation, J. Mater. Chem. A 7(39) (2019) 22487–22499. |