Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 353-359.DOI: 10.1016/j.cjche.2022.03.006
Previous Articles Next Articles
Yachen Deng, Shifu Wang, Yanqiang Huang, Xuning Li
Received:
2022-02-25
Revised:
2022-03-13
Online:
2022-04-28
Published:
2022-03-28
Contact:
Xuning Li,E-mail:lixn@dicp.ac.cn
Supported by:
Yachen Deng, Shifu Wang, Yanqiang Huang, Xuning Li
通讯作者:
Xuning Li,E-mail:lixn@dicp.ac.cn
基金资助:
Yachen Deng, Shifu Wang, Yanqiang Huang, Xuning Li. Structural reconstruction of Sn-based metal-organic frameworks for efficient electrochemical CO2 reduction to formate[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 353-359.
Yachen Deng, Shifu Wang, Yanqiang Huang, Xuning Li. Structural reconstruction of Sn-based metal-organic frameworks for efficient electrochemical CO2 reduction to formate[J]. 中国化学工程学报, 2022, 43(3): 353-359.
[1] T.N. Nguyen, M. Salehi, Q.V. Le, A. Seifitokaldani, C.T. Dinh, Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts, ACS Catal. 10 (17) (2020) 10068-10095. https://doi.org/10.1021/acscatal.0c02643 [2] N.Q. Zhang, X.X. Zhang, L. Tao, P. Jiang, C.L. Ye, R. Lin, Z.W. Huang, A. Li, D.W. Pang, H. Yan, Y. Wang, P. Xu, S.F. An, Q.H. Zhang, L.C. Liu, S.X. Du, X.D. Han, D.S. Wang, Y.D. Li, Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction, Angew. Chem. Int. Ed. 60 (11) (2021) 6170-6176. https://doi.org/10.1002/anie.202014718 [3] X. Wang, Z.Y. Wang, F.P. García de Arquer, C.T. Dinh, A. Ozden, Y.C. Li, D.H. Nam, J. Li, Y.S. Liu, J. Wicks, Z.T. Chen, M.F. Chi, B. Chen, Y. Wang, J. Tam, J.Y. Howe, A. Proppe, P. Todorović, F.W. Li, T.T. Zhuang, C.M. Gabardo, A.R. Kirmani, C. McCallum, S.F. Hung, Y. Lum, M.C. Luo, Y.M. Min, A.N. Xu, C.P. O'Brien, B. Stephen, B. Sun, A.H. Ip, L.J. Richter, S.O. Kelley, D. Sinton, E.H. Sargent, Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation, Nat. Energy 5 (6) (2020) 478-486. https://doi.org/10.1038/s41560-020-0607-8 [4] G.B. Wen, B.H. Ren, M.G. Park, J. Yang, H.Z. Dou, Z. Zhang, Y.P. Deng, Z.Y. Bai, L. Yang, J. Gostick, G.A. Botton, Y.F. Hu, Z.W. Chen, Back cover:ternary Sn-Ti-O electrocatalyst boosts the stability and energy efficiency of CO2 reduction (angew. chem. int. Ed. 31/2020), Angew. Chem. Int. Ed. 59 (31) (2020) 13124. https://doi.org/10.1002/anie.202007875 [5] S.A. Mahyoub, F.A. Qaraah, S.L. Yan, A. Hezam, J.H. Zhong, Z.M. Cheng, Rational design of low loading Pd-alloyed Ag nanocorals for high current density CO2-to-CO electroreduction at elevated pressure, Mater. Today Energy 24 (2022) 100923. http://dx.doi.org/10.1016/j.mtener.2021.100923 [6] Z.X. Wu, H.B. Wu, W.Q. Cai, Z.H. Wen, B.H. Jia, L. Wang, W. Jin, T.Y. Ma, Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH, Angew. Chem. Int. Ed Engl. 60 (22) (2021) 12554-12559. https://pubmed.ncbi.nlm.nih.gov/33720479/ [7] H.X. Li, X. Yue, Y.S. Qiu, Z. Xiao, X.B. Yu, C. Xue, J.H. Xiang, Selective electroreduction of CO2 to formate over the co-electrodeposited Cu/Sn bimetallic catalyst, Mater. Today Energy 21 (2021) 100797. http://dx.doi.org/10.1016/j.mtener.2021.100797 [8] Q. Fan, M.L. Zhang, M.W. Jia, S.Z. Liu, J.S. Qiu, Z.Y. Sun, Electrochemical CO2 reduction to C2+ species:heterogeneous electrocatalysts, reaction pathways, and optimization strategies, Mater. Today Energy 10 (2018) 280-301. http://dx.doi.org/10.1016/j.mtener.2018.10.003 [9] N. Han, P. Ding, L. He, Y.Y. Li, Y.G. Li, CO2 reduction:promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate (adv. energy mater. 11/2020), Adv. Energy Mater. 10 (11) (2020) 2070046. http://dx.doi.org/10.1002/aenm.202070046 [10] L. Lin, T.F. Liu, J.P. Xiao, H.F. Li, P.F. Wei, D.F. Gao, B. Nan, R. Si, G.X. Wang, X.H. Bao, Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst, Angew. Chem. Int. Ed. 59 (50) (2020) 22408-22413. https://doi.org/10.1002/anie.202009191 [11] S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu, Y. Chen, Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction, Nano-micro Lett. 11 (2019) 1-19 [12] D. Gao, R.M.". Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products, Nat. Catal. 2 (3) (2019) 198-210. https://www.nature.com/articles/s41929-019-0235-5%22%3e [13] D.D. Ma, Q.L. Zhu, MOF-based atomically dispersed metal catalysts:recent progress towards novel atomic configurations and electrocatalytic applications, Coord. Chem. Rev. 422 (2020) 213483. http://dx.doi.org/10.1016/j.ccr.2020.213483 [14] P. Shao, L.C. Yi, S.M. Chen, T.H. Zhou, J. Zhang, Metal-organic frameworks for electrochemical reduction of carbon dioxide:the role of metal centers, J. Energy Chem. 40 (2020) 156-170. https://doi.org/10.1016/j.jechem.2019.04.013 [15] Z.Q. Gao, C.Y. Wang, J.J. Li, Y.T. Zhu, Z.C. Zhang, W.P. Hu, Conductive metal-organic frameworks for electrocatalysis:achievements, challenges, and opportunities, Acta Phys. Chimica Sin. (2020) 2010025-. https://doi.org/10.3866/pku.whxb202010025 [16] Q.H. Yang, C.C. Yang, C.H. Lin, H.L. Jiang, Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion, Angew. Chem. Int. Ed. 58 (11) (2019) 3511-3515. https://doi.org/10.1002/anie.201813494 [17] J. Yang, X.L. Wang, Y.T. Qu, X. Wang, H. Huo, Q.K. Fan, J. Wang, L.M. Yang, Y.E. Wu, Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction, Adv. Energy Mater. 10 (36) (2020) 2001709. https://doi.org/10.1002/aenm.202001709 [18] T.A. Al-Attas, N.N. Marei, X. Yong, N.G. Yasri, V. Thangadurai, G. Shimizu, S. Siahrostami, M.G. Kibria, Ligand-engineered metal-organic frameworks for electrochemical reduction of carbon dioxide to carbon monoxide, ACS Catal. 11 (12) (2021) 7350-7357. https://doi.org/10.1021/acscatal.1c01506 [19] Y. Zhang, L. Jiao, W.J. Yang, C.F. Xie, H.L. Jiang, Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction, Angew. Chem. Int. Ed. 60 (14) (2021) 7607-7611. https://doi.org/10.1002/anie.202016219 [20] Z. Weng, Y.S. Wu, M.Y. Wang, J.B. Jiang, K. Yang, S.J. Huo, X.F. Wang, Q. Ma, G.W. Brudvig, V.S. Batista, Y.Y. Liang, Z.X. Feng, H.L. Wang, Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction, Nat. Commun. 9 (1) (2018) 415. https://pubmed.ncbi.nlm.nih.gov/29379087/ [21] E.H. Zhang, T. Wang, K. Yu, J. Liu, W.X. Chen, A. Li, H.P. Rong, R. Lin, S.F. Ji, X.S. Zheng, Y. Wang, L.R. Zheng, C. Chen, D.S. Wang, J.T. Zhang, Y.D. Li, Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction, J. Am. Chem. Soc. 141 (42) (2019) 16569-16573. https://pubmed.ncbi.nlm.nih.gov/31588748/ [22] M.X. Chen, S.P. Wan, L.X. Zhong, D.B. Liu, H.B. Yang, C.C. Li, Z.Q. Huang, C.T. Liu, J. Chen, H.G. Pan, D.S. Li, S.Z. Li, Q.Y. Yan, B. Liu, Dynamic restructuring of Cu-doped SnS 2 nanoflowers for highly selective electrochemical CO2 reduction to formate, Angew. Chem. Int. Ed. 60 (50) (2021) 26233-26237. https://doi.org/10.1002/anie.202111905 [23] D.Z. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao, S.Z. Qiao, The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation, Angew. Chem. Int. Ed. 60 (33) (2021) 18178-18184. https://doi.org/10.1002/anie.202104747 [24] W.H. Geng, W. Chen, G.H. Li, X. Dong, Y.F. Song, W. Wei, Y.H. Sun, Induced CO2 electroreduction to formic acid on metal-organic frameworks via node doping, ChemSusChem 13 (16) (2020) 4035-4040. https://doi.org/10.1002/cssc.202001310 [25] X.N. Li, C.S. Cao, S.F. Hung, Y.R. Lu, W.Z. Cai, A.I. Rykov, S. Miao, S.B. Xi, H.B. Yang, Z.H. Hu, J.H. Wang, J.Y. Zhao, E.E. Alp, W. Xu, T.S. Chan, H.M. Chen, Q.H. Xiong, H. Xiao, B. Liu, Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material, Chem 6 (12) (2020) 3440-3454. http://dx.doi.org/10.1016/j.chempr.2020.10.027 [26] G. Kumari, K. Jayaramulu, T.K. Maji, C. Narayana, Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8:a Raman study, J. Phys. Chem. A 117 (43) (2013) 11006-11012. https://pubmed.ncbi.nlm.nih.gov/24106800/ [27] M. Erkartal, U. Erkilic, B. Tam, H. Usta, O. Yazaydin, J.T. Hupp, O.K. Farha, U. Sen, From 2-methylimidazole to 1, 2, 3-triazole:a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification, Chem. Commun. (Camb) 53 (12) (2017) 2028-2031. https://pubmed.ncbi.nlm.nih.gov/28124040/ [28] S. Dou, J.J. Song, S.B. Xi, Y.H. Du, J. Wang, Z.F. Huang, Z.J. Xu, X. Wang, Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping, Angew. Chem. Int. Ed. 58 (12) (2019) 4041-4045. https://doi.org/10.1002/anie.201814711 [29] R. Daiyan, W.H. Saputera, H. Masood, J. Leverett, X.Y. Lu, R. Amal, A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel, Adv. Energy Mater. 10 (11) (2020) 1902106. https://doi.org/10.1002/aenm.201902106 [30] V. Gabaudan, R. Berthelot, M.T. Sougrati, P.E. Lippens, L. Monconduit, L. Stievano, SnSbvs.Sn:improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb, J. Mater. Chem. A 7 (25) (2019) 15262-15270. https://doi.org/10.1039/c9ta03760h |
[1] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[2] | Xueting Liu, Chunhui Hu, Jingjing Wu, Peng Cui, Fengyu Wei. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 222-229. |
[3] | Guorong Wu, Qiangwen Fan, Wenjie Sun, Zhiwu Yu, Zhiqian Jia, Jianguo Ma. Regulatable pervaporation performance of Zn-MOFs/polydimethylsiloxane mixed matrix pervaporation membranes [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 312-318. |
[4] | Jinlong Li, Xiaoqing Wang, Puxu Liu, Xiaohua Liu, Libo Li, Jinping Li. Shaping of metal-organic frameworks through a calcium alginate method towards ethylene/ethane separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 17-24. |
[5] | Daofei Lv, Junhao Xu, Pingjun Zhou, Shi Tu, Feng Xu, Jian Yan, Hongxia Xi, Zewei Liu, Wenbing Yuan, Qiang Fu, Xin Chen, Qibin Xia. Highly selective separation of propylene/propane mixture on cost-effectively four-carbon linkers based metal-organic frameworks [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 126-134. |
[6] | Mingming Zhai, Tomohisa Yoshioka, Jianhua Yang, Jinqu Wang, Dinglin Zhang, Jinming Lu, Yan Zhang. Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 104-111. |
[7] | Xianqiang Zheng, Yanlong Shen, Shitao Wang, Ke Huang, Dapeng Cao. Selective adsorption of SF6 in covalent- and metal-organic frameworks [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 88-95. |
[8] | Xiao Liang, Qing Li, Zhiyuan Shi, Shaowei Bai, Quanshun Li. Immobilization of urease in metal-organic frameworks via biomimetic mineralization and its application in urea degradation [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2173-2180. |
[9] | Ling Yang, Wei Zhou, Hao Li, Ali Alsalme, Litao Jia, Jiangfeng Yang, Jinping Li, Libo Li, Banglin Chen. Reversed ethane/ethylene adsorption in a metal-organic framework via introduction of oxygen [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 593-597. |
[10] | Marwa S. Embaby, Saber D. Elwany, Widiastuti Setyaningsih, Mohamed R. Saber. The adsorptive properties of UiO-66 towards organic dyes: A record adsorption capacity for the anionic dye Alizarin Red S. [J]. Chin.J.Chem.Eng., 2018, 26(4): 731-739. |
[11] | Xiaoqing Wang, Libo Li, Jiangfeng Yang, Jinping Li. CO2/CH4 and CH4/N2 separation on isomeric metal organic frameworks [J]. , 2016, 24(12): 1687-1694. |
[12] | YANG Qingyuan, XU Qing, LIU Bei, ZHONG Chongli, Smit Berend. Molecular Simulation of CO2/H2 Mixture Separation in Metal-organic Frameworks:Effect of Catenation and Electrostatic Interactions [J]. , 2009, 17(5): 781-790. |
[13] | XUE Chunyu, ZHOU Zi'e, YANG Qingyuan, ZHONG Chongli. Enhanced Methane Adsorption in Catenated Metal-organic Frameworks:A Molecular Simulation Study [J]. , 2009, 17(4): 580-584. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||