Chinese Journal of Chemical Engineering ›› 2022, Vol. 44 ›› Issue (4): 131-139.DOI: 10.1016/j.cjche.2022.01.002
Previous Articles Next Articles
Younki Cho, Ryan Lo, Keerthana Krishnan, Xiaolong Yin, Hossein Kazemi
Received:
2021-06-29
Revised:
2022-01-04
Online:
2022-06-18
Published:
2022-04-28
Contact:
Xiaolong Yin,E-mail:xyin@mines.edu
Supported by:
Younki Cho, Ryan Lo, Keerthana Krishnan, Xiaolong Yin, Hossein Kazemi
通讯作者:
Xiaolong Yin,E-mail:xyin@mines.edu
基金资助:
Younki Cho, Ryan Lo, Keerthana Krishnan, Xiaolong Yin, Hossein Kazemi. Measuring absolute adsorption in porous rocks using oscillatory motions of a spring-mass system[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 131-139.
Younki Cho, Ryan Lo, Keerthana Krishnan, Xiaolong Yin, Hossein Kazemi. Measuring absolute adsorption in porous rocks using oscillatory motions of a spring-mass system[J]. 中国化学工程学报, 2022, 44(4): 131-139.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.01.002
[1] M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine, Chem. Soc. Rev. 45 (12) (2016) 3479-3563 [2] A. Busch, Y. Gensterblum, CBM and CO2-ECBM related sorption processes in coal:a review, Int. J. Coal Geol. 87 (2) (2011) 49-71 [3] V. Reitenbach, L. Ganzer, D. Albrecht, B. Hagemann, Influence of added hydrogen on underground gas storage:a review of key issues, Environ. Earth Sci. 73 (11) (2015) 6927-6937 [4] M.D. Aminu, S.A. Nabavi, C.A. Rochelle, V. Manovic, A review of developments in carbon dioxide storage, Appl. Energy 208 (2017) 1389-1419 [5] S. Rani, E. Padmanabhan, B.K. Prusty, Review of gas adsorption in shales for enhanced methane recovery and CO2 storage, J. Petroleum Sci. Eng. 175 (2019) 634-643 [6] R. Tarkowski, Underground hydrogen storage:characteristics and prospects, Renew. Sustain. Energy Rev. 105 (2019) 86-94 [7] D. Zivar, S. Kumar, J. Foroozesh, Underground hydrogen storage:A comprehensive review, Int. J. Hydrog. Energy 46 (45) (2021) 86-94 [8] S. Brandani, E. Mangano, L. Sarkisov, Net, excess and absolute adsorption and adsorption of helium, Adsorption 22 (2) (2016) 261-276 [9] A. Mitropoulos, The kelvin equation, J. Colloid Interface Sci. 317 (2) (2008) 643-648 [10] T. Horikawa, D.D. Do, D. Nicholson, Capillary condensation of adsorbates in porous materials, Adv. Colloid Interface Sci. 169 (1) (2011) 40-58 [11] E. Barsotti, S.P. Tan, S. Saraji, M. Piri, J.H. Chen, A review on capillary condensation in nanoporous media:implications for hydrocarbon recovery from tight reservoirs, Fuel 184 (2016) 344-361 [12] K. Cychosz Struckhoff, M. Thommes, L. Sarkisov, On the universality of capillary condensation and adsorption hysteresis phenomena in ordered and crystalline mesoporous materials, Adv. Mater. Interfaces 7 (12) (2020) 2000184 [13] G.R. Chalmers, R.M. Bustin, I.M. Power, Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units, AAPG Bull. 96 (6) (2012) 1099-1119 [14] U. Kuila, M. Prasad, Specific surface area and pore-size distribution in clays and shales, Geophys. Prospect. 61 (2) (2013) 341-362 [15] M. Gasparik, A. Ghanizadeh, P. Bertier, Y. Gensterblum, S. Bouw, B.M. Krooss, High-pressure methane sorption isotherms of black shales from the Netherlands, Energy Fuels 26 (8) (2012) 4995-5004 [16] Y. Belmabkhout, M. Frère, G. De Weireld, High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods, Meas. Sci. Technol. 15 (5) (2004) 848-858 [17] ISO/TC 24/SC 4 Particle Characterization Technical Committee, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 2:Analysis of nanopores by gas adsorption, ISO 15901-2:2006. [18] ISO/TC 24/SC 4 Particle Characterization Technical Committee, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 3:Analysis of micropores by gas adsorption, ISO 15901-3:2007. [19] D.P. Broom, The accuracy of hydrogen sorption measurements on potential storage materials, Int. J. Hydrog. Energy 32 (18) (2007) 4871-4888 [20] M. Gasparik, T.F.T. Rexer, A.C. Aplin, P. Billemont, G. de Weireld, Y. Gensterblum, M. Henry, B.M. Krooss, S.B. Liu, X.Z. Ma, R. Sakurovs, Z.G. Song, G. Staib, K.M. Thomas, S.B. Wang, T.W. Zhang, First international inter-laboratory comparison of high-pressure CH4, CO2 and C2H6 sorption isotherms on carbonaceous shales, Int. J. Coal Geol. 132 (2014) 131-146 [21] A. Busch, Y. Gensterblum, B.M. Krooss, N. Siemons, Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals:an experimental study, Int. J. Coal Geol. 66 (1-2) (2006) 53-68 [22] J.D.N. Pone, P.M. Halleck, J.P. Mathews, Sorption capacity and sorption kinetic measurements of CO2 and CH4 in confined and unconfined bituminous coal, Energy Fuels 23 (9) (2009) 4688-4695 [23] S. Hol, C.J. Spiers, Competition between adsorption-induced swelling and elastic compression of coal at CO2 pressures up to 100 MPa, J. Mech. Phys. Solids 60 (11) (2012) 1862-1882 [24] G. De Weireld, M. Frère, R. Jadot, Automated determination of high-temperature and high-pressure gas adsorption isotherms using a magnetic suspension balance, Meas. Sci. Technol. 10 (2) (1999) 117-126 [25] F. Dreisbach, H.W. Lösch, Magnetic suspension balance for simultaneous measurement of a sample and the density of the measuring fluid, J. Therm. Anal. Calorim. 62 (2) (2000) 515-521 [26] L. Hamon, M. Frère, G. Weireld, Development of a new apparatus for gas mixture adsorption measurements coupling gravimetric and chromatographic techniques, Adsorption 14 (4-5) (2008) 493-499 [27] M.J. Benham, D.K. Ross, Experimental determination of absorption-desorption isotherms by computer-controlled gravimetric analysis, Zeitschrift Für Physikalische Chemie 163 (1) (1989) 25-32 [28] S. Day, G. Duffy, R. Sakurovs, S. Weir, Effect of coal properties on CO2 sorption capacity under supercritical conditions, Int. J. Greenh. Gas Control 2 (3) (2008) 342-352 [29] S. Day, R. Sakurovs, S. Weir, Supercritical gas sorption on moist coals, Int. J. Coal Geol. 74 (3-4) (2008) 203-214 [30] Barsotti, E., S. Saraji, S. P. Tan, and M. Piri. "Capillary condensation of binary and ternary mixtures of n-Pentane-Isopentane-CO2 in nanopores." Langmuir 34(5) (2018):1967-1980 [31] D.C. Bonner, Y.L. Cheng, A new method for determination of equilibrium sorption of gases by polymers at elevated temperatures and pressures, J. Polym. Sci. B Polym. Lett. Ed. 13 (5) (1975) 259-264 [32] Y. Hussain, Y.T. Wu, P.J. Ampaw, C.S. Grant, Dissolution of polymer films in supercritical carbon dioxide using a quartz crystal microbalance, J. Supercrit. Fluids 42 (2) (2007) 255-264 [33] H.T. Schaef, J.S. Loring, V.A. Glezakou, Q.R.S. Miller, J. Chen, A.T. Owen, M.S. Lee, E.S. Ilton, A.R. Felmy, B.P. McGrail, C.J. Thompson, Competitive sorption of CO2 and H2O in 2:1 layer phyllosilicates, Geochimica Cosmochimica Acta 161 (2015) 248-257 [34] B.J. Briscoe, H. Mahgerefteh, A novel technique for the quantitative measurement of gaseous uptake in organic polymers at high pressures, J. Phys. E:Sci. Instrum. 17 (6) (1984) 483-487 [35] B.J. Briscoe, O. Lorge, A. Wajs, P. Dang, Carbon dioxide-poly(vinylidene fluoride) interactions at high pressure, J. Polym. Sci. B Polym. Phys. 36 (13) (1998) 2435-2447 [36] Z. Larson, Y. Cho, X.L. Yin, Experimental technique to measure mass under high pressure conditions using oscillatory motions of a spring-mass system, Meas. Sci. Technol. 28 (6) (2017) 065902 [37] F.B.H. Boukadi, R.W. Watson, O.O. Owolabi, The influence of reservoir rock properties on ultimate oil recovery in radial-core waterfloods, J. Can. Petroleum Technol. 33 (6) (1994) [38] R. Kareem, P. Cubillas, J. Gluyas, L. Bowen, S. Hillier, H.C. Greenwell, Multi-technique approach to the petrophysical characterization of Berea sandstone core plugs (Cleveland Quarries, USA), J. Petroleum Sci. Eng. 149 (2017) 436-455 [39] P.N. Sen, C. Straley, W.E. Kenyon, M.S. Whittingham, Surface-to-volume ratio, charge density, nuclear magnetic relaxation, and permeability in clay-bearing sandstones, GEOPHYSICS 55 (1) (1990) 61-69 [40] P.L. Churcher, P.R. French, J.C. Shaw, L.L. Schramm, Rock Properties of Berea Sandstone, Baker Dolomite, and Indiana LimestoneSPE International Symposium on Oilfield Chemistry. Anaheim, California. Society of Petroleum Engineers, (1991) [41] S.B. Shang, R.N. Horne, H.J. Ramey Jr, Water vapor adsorption on geothermal reservoir rocks, Geothermics 24 (4) (1995) 523-540 [42] P. Lai, K. Moulton, S. Krevor, Pore-scale heterogeneity in the mineral distribution and reactive surface area of porous rocks, Chem. Geol. 411 (2015) 260-273 [43] Y. Cho, E. Eker, I. Uzun, X.L. Yin, H. Kazemi, Rock Characterization in Unconventional Reservoirs:A Comparative Study of Bakken, Eagle Ford, and Niobrara FormationsAll Days. May 5-6, 2016. Denver, Colorado, USA. SPE, (2016) [44] A. Kamruzzaman, M. Prasad, S. Sonnenberg, Petrophysical Rock Typing in Unconventional Shale Plays:The Niobrara Formation Case StudyProceedings of the 7th Unconventional Resources Technology Conference. July 22-24, 2019. Denver, Colorado, USA. Tulsa, OK, USA:American Association of Petroleum Geologists, (2019) [45] E.W. Lemmon, M.O. McLinden, D.G. Friend, Thermophysical Properties of Fluid Systems, in:P.J. Linstrom, W.G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899. Data retrieved in 2018. [46] P. Chareonsuppanimit, S.A. Mohammad, R.L. Robinson Jr, K.A.M. Gasem, High-pressure adsorption of gases on shales:measurements and modeling, Int. J. Coal Geol. 95 (2012) 34-46 [47] W.C. Lyons, G.J. Plisga, M.D. Lorenz. Standard Handbook of Petroleum and Natural Gas Engineering, Amsterdam:Elsevier, 2016 [48] J.H. Zhao, Z.J. Jin, Q.H. Hu, Z.K. Jin, T.J. Barber, Y.X. Zhang, M. Bleuel, Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs, Sci. Rep. 7 (1) (2017) 15413 |
[1] | Xinxin Zhao, Wenlong Xu, Shuang Chen, Huie Liu, Xiaofei Yan, Yan Bao, Zexin Liu, Fan Yang, Huan Zhang, Ping Yu. Fabrication of super-elastic graphene aerogels by ambient pressure drying and application to adsorption of oils [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 89-97. |
[2] | Kang Wang, Wei Tan, Liyan Liu. “Relay-mode” promoting permeation of water-based fire extinguishing agent in granular materials porous media stacks [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 98-112. |
[3] | Jinglei Cui, Qian Wang, Jianming Gao, Yanxia Guo, Fangqin Cheng. The selective adsorption of rare earth elements by modified coal fly ash based SBA-15 [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 155-164. |
[4] | Zhibin Ma, Xueli Zhang, Guangjun Lu, Yanxia Guo, Huiping Song, Fangqin Cheng. Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion fly ash for the highly efficient removal of lead from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 193-205. |
[5] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[6] | Yaling Li, Hao Ai, Liangzhi Qiao, Yinghong Wang, Kaifeng Du. Fabrication and characterization of hierarchical porous Ni2+ doped hydroxyapatite microspheres and their enhanced protein adsorption capacity [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 238-247. |
[7] | Minxia Liu, Dang Wu, Dongling Qin, Gang Yang. Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 258-267. |
[8] | Tao Sun, Mingjun Pang, Yang Fei. Numerical study on hydrodynamic characteristics of spherical bubble contaminated by surfactants under higher Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 268-283. |
[9] | Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin. Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 20-28. |
[10] | Zhengguo Xu, Xiaochong Wang, Shuying Sun. Performance of a synthetic resin for lithium adsorption in waste liquid of extracting aluminum from fly-ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 115-123. |
[11] | Xinyu Chen, Shuo Shi, Ximei Han, Min Li, Ying Nian, Jing Sun, Wentao Zhang, Tianli Yue, Jianlong Wang. Insights into high-efficient removal of tetracycline by a codoped mesoporous carbon adsorbent [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 148-156. |
[12] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[13] | Iman Farirzadeh, Majid Riahi Samani, Davood Toghraie. Lead removal from aqueous medium using fruit peels and polyaniline composites in aqueous and non-aqueous solvents in the presence of polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 253-259. |
[14] | Xiaocui Sun, Xue Liu, Guang-Rong Zhao. Separation of salidroside from the fermentation broth of engineered Escherichia coli using macroporous adsorbent resins [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 260-267. |
[15] | Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari. Optimization of continuous electrocoagulation-adsorption combined process for the treatment of a textile effluent [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 310-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||