Chinese Journal of Chemical Engineering ›› 2022, Vol. 46 ›› Issue (6): 73-83.DOI: 10.1016/j.cjche.2021.07.022
Previous Articles Next Articles
Zhouxin Chang1, Feng Yu1,2, Zhisong Liu1, Zijun Wang1, Jiangbing Li1, Bin Dai1, Jinli Zhang1
Received:
2021-03-08
Revised:
2021-07-14
Online:
2022-07-20
Published:
2022-06-28
Contact:
Feng Yu,E-mail:yufeng05@mail.ipc.ac.cn
Supported by:
Zhouxin Chang1, Feng Yu1,2, Zhisong Liu1, Zijun Wang1, Jiangbing Li1, Bin Dai1, Jinli Zhang1
通讯作者:
Feng Yu,E-mail:yufeng05@mail.ipc.ac.cn
基金资助:
Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study[J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83.
Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study[J]. 中国化学工程学报, 2022, 46(6): 73-83.
[1] J.B. Branco, P.E. Brito, A.C. Ferreira, Methanation of CO2 over nickel-lanthanide bimetallic oxides supported on silica, Chem. Eng. J. 380 (2020) 122465 [2] Q. Liu, J.J. Gao, F.N. Gu, X.P. Lu, Y.J. Liu, H.F. Li, Z.Y. Zhong, B. Liu, G.W. Xu, F.B. Su, One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation, J. Catal. 326 (2015) 127-138 [3] J. Ren, C. Mebrahtu, R. Palkovits, Ni-based catalysts supported on Mg-Al hydrotalcites with different morphologies for CO2 methanation:exploring the effect of metal-support interaction, Catal. Sci. Technol. 10 (6) (2020) 1902-1913 [4] S.S. Ye, J.W. Guo, Y.B. Wang, J.R. Xie, Z.M. Liu, N.W. Zhang, J.B. Zheng, Z.K. Cao, B.H. Chen, Effect of sodium content on the interaction between Ni and support and catalytic performance for syngas methanation over Ni/Zr-Yb-O catalysts, Chin. J. Chem. Eng. 27 (11) (2019) 2705-2711 [5] A. Loder, M. Siebenhofer, S. Lux, The reaction kinetics of CO2 methanation on a bifunctional Ni/MgO catalyst, J. Ind. Eng. Chem. 85 (2020) 196-207 [6] G. Caravaggio, L. Nossova, M.J. Turnbull, Nickel-magnesium mixed oxide catalyst for low temperature methane oxidation, Chem. Eng. J. 405 (2021) 126862 [7] J. Liu, C.Y. Zheng, J.R. Yue, G.W. Xu, Synthesis, characterization and catalytic methanation performance of modified Kaolin-supported Ni-based catalysts, Chin. J. Chem. Eng. 27 (12) (2019) 2953-2959 [8] P. Liu, B.R. Zhao, S. Li, H.F. Shi, M. Ma, J.J. Lu, F. Yang, X.N. Deng, X.Z. Jia, X.X. Ma, X.L. Yan, Influence of the microstructure of Ni-Co bimetallic catalyst on CO methanation, Ind. Eng. Chem. Res. 59 (5) (2020) 1845-1854 [9] K.N. Ahmad, S.A. Anuar, W.N.R. Wan Isahak, M.I. Rosli, M.A. Yarmo, Influences of calcination atmosphere on nickel catalyst supported on mesoporous graphitic carbon nitride thin sheets for CO methanation, ACS Appl Mater Interfaces 12 (6) (2020) 7102-7113 [10] S.S. Xu, S. Chansai, Y. Shao, S.J. Xu, Y.C. Wang, S. Haigh, Y.B. Mu, Y.L. Jiao, C.E. Stere, H.H. Chen, X.L. Fan, C. Hardacre, Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide, Appl. Catal. B:Environ. 268 (2020) 118752 [11] Kang J, He S, Zhou W, Shen Z, Li Y, Chen M, Zhang Q, Wang Y, Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis, Nat Commun 11 (1) (2020) 827 [12] H.S. Lim, G. Kim, Y. Kim, M. Lee, D. Kang, H. Lee, J.W. Lee, Ni-exsolved La1-xCaxNiO3 perovskites for improving CO2 methanation, Chem. Eng. J. 412 (2021) 127557 [13] A. Singlitico, I. Kilgallon, J. Goggins, R.F.D. Monaghan, GIS-based techno-economic optimisation of a regional supply chain for large-scale deployment of bio-SNG in a natural gas network, Appl. Energy 250 (2019) 1036-1052 [14] W.L. Vrijburg, E. Moioli, W. Chen, M. Zhang, B.J.P. Terlingen, B. Zijlstra, I.A.W. Filot, A. Züttel, E.A. Pidko, E.J.M. Hensen, Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation, ACS Catal. 9 (9) (2019) 7823-7839 [15] C. Lv, L.L. Xu, M.D. Chen, Y. Cui, X.Y. Wen, C.E. Wu, B. Yang, F.G. Wang, Z.C. Miao, X. Hu, Q.H. Shou, Constructing highly dispersed Ni based catalysts supported on fibrous silica nanosphere for low-temperature CO2 methanation, Fuel 278 (2020) 118333 [16] Han B, Zhao L, Wang F, Xu L, Yu H, Cui Y, et al., Effect of calcination temperature on performance of Ni@SiO2 catalyst in methane dry reforming, Ind Eng Chem Res 59 (2020) 13370-13379 [17] S. Ewald, M. Kolbeck, T. Kratky, M. Wolf, O. Hinrichsen, On the deactivation of Ni-Al catalysts in CO2 methanation, Appl. Catal. A:Gen. 570 (2019) 376-386 [18] C.M. Jia, J.J. Gao, J. Li, F.N. Gu, G.W. Xu, Z.Y. Zhong, F.B. Su, Nickel catalysts supported on calcium titanate for enhanced CO methanation, Catal. Sci. Technol. 3 (2) (2013) 490-499 [19] Q. Wan, V. Fung, S. Lin, Z.L. Wu, D.E. Jiang, Perovskite-supported Pt single atoms for methane activation, J. Mater. Chem. A 8 (8) (2020) 4362-4368 [20] Y. Wang, H. Arandiyan, S.A. Bartlett, A. Trunschke, H.Y. Sun, J. Scott, A.F. Lee, K. Wilson, T. Maschmeyer, R. Schlögl, R. Amal, Inducing synergy in bimetallic RhNi catalysts for CO2 methanation by galvanic replacement, Appl. Catal. B:Environ. 277 (2020) 119029 [21] S. Colussi, P. Fornasiero, A. Trovarelli, Structure-activity relationship in Pd/CeO2 methane oxidation catalysts, Chin. J. Catal. 41 (6) (2020) 938-950 [22] A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. Bailón-García, D. Lozano-Castelló, U. De-La-torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, A. Bueno-López, Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts, Appl. Catal. B:Environ. 265 (2020) 118538 [23] A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. Bailón-García, D. Lozano-Castelló, U. De-La-torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, A. Bueno-López, Design of active sites in Ni/CeO2 catalysts for the methanation of CO2:tailoring the Ni-CeO2 contact, Appl. Mater. Today 19 (2020) 100591 [24] Y. Zhang, H.Y. Yang, B. Bian, Q.B. Guo, Q. Liu, Organic additive assisted ordered mesoporous Ni/Al2O3 catalyst for CO2 methanation, ChemistrySelect 5 (16) (2020) 4913-4919 [25] Y.M. Chen, B.C. Qiu, Y. Liu, Y. Zhang, An active and stable nickel-based catalyst with embedment structure for CO2 methanation, Appl. Catal. B:Environ. 269 (2020) 118801 [26] L.L. Xu, Y. Cui, M.D. Chen, X.B. Lian, B. Yang, C.E. Wu, F.G. Wang, Effects of the fabrication strategy on the catalytic performances of Co-Ni bimetal ordered mesoporous catalysts toward CO2 methanation, Sustain. Energy Fuels 3 (11) (2019) 3038-3049 [27] J.T. Shi, S.Q. Xu, H.Y. Qin, W. Li, J.L. Zhang, Gas-liquid mass transfer characteristics in two inline high shear mixers, Ind. Eng. Chem. Res. 53 (12) (2014) 4894-4901 [28] J.Q. Tian, C. Wang, F. Yu, X. Zhou, J. Zhang, S.C. Yang, J.M. Dan, P. Cao, B. Dai, Q. Wang, J.L. Zhang, Mn-Ce-Fe-Al mixed oxide nanoparticles via a high shear mixer facilitated coprecipitation method for low temperature selective catalytic reduction of NO with NH3, Appl. Catal. A:Gen. 586 (2019) 117237 [29] Y.Y. Liu, J.J. Gu, J.L. Zhang, J. Wang, N. Nie, Y. Fu, W. Li, F. Yu, Controllable synthesis of nano-sized LiFePO4/C via a high shear mixer facilitated hydrothermal method for high rate Li-ion batteries, Electrochimica Acta 173 (2015) 448-457 [30] X. Zhou, J.M. Dan, J. Zhang, S.C. Yang, L. Shi, J.Y. Wang, B. Dai, F. Yu, J.L. Zhang, Two-dimensional MnAl mixed-metal oxide nanosheets prepared via a high-shear-mixer-facilitated coprecipitation method for enhanced selective catalytic reduction of NO with NH3, Chem. Eng. Process.-Process. Intensif. 145 (2019) 107664 [31] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys Rev Lett 77 (18) (1996) 3865-3868 [32] W.L. Zhen, F. Gao, B. Tian, P. Ding, Y.B. Deng, Z. Li, H.B. Gao, G.X. Lu, Enhancing activity for carbon dioxide methanation by encapsulating (1 1 1) facet Ni particle in metal-organic frameworks at low temperature, J. Catal. 348 (2017) 200-211 [33] B. Dash, S.S. Rath, Density Functional Theory and Molecular Dynamics insights into the site-dependent adsorption of hydrogen fluoride on kaolinite, J. Mol. Liq. 299 (2020) 112265 [34] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (24) (1994) 17953-17979 [35] J. Ren, H.L. Guo, J.Z. Yang, Z.F. Qin, J.Y. Lin, Z. Li, Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory, Appl. Surf. Sci. 351 (2015) 504-516 [36] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12) (1976) 5188 [37] S. Smidstrup, A. Pedersen, K. Stokbro, H. Jónsson, Improved initial guess for minimum energy path calculations, J Chem Phys 140 (21) (2014) 214106 [38] N. Benayad, M. Djermouni, A. Zaoui, S. Kacimi, A. Boukortt, Spin state transition in Bi1-xLaxCoO3 perovskite alloys:DFT+U study, Mater. Chem. Phys. 207 (2018) 507-512 [39] L. Wei, S.P. Cui, H.X. Guo, X.Y. Ma, Study on the role of Mn species in low temperature SCR on MnOx/TiO2 through experiment and DFT calculation, Mol. Catal. 445 (2018) 102-110 [40] M. Romero-Sáez, A.B. Dongil, N. Benito, R. Espinoza-González, N. Escalona, F. Gracia, CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes:a comparison between two impregnation strategies, Appl. Catal. B:Environ. 237 (2018) 817-825 [41] Y.S. Wu, J.H. Lin, G.Y. Ma, Y.F. Xu, J.L. Zhang, C. Samart, M.Y. Ding, Ni nanocatalysts supported on mesoporous Al2O3-CeO2 for CO2 methanation at low temperature, RSC Adv. 10 (4) (2020) 2067-2072 [42] S.D. Qin, J.B. Li, J.Y. Long, X. Yang, P. Miao, Promotion effect of cerium on Mo/Al2O3 catalyst for methanation, Appl. Catal. A:Gen. 598 (2020) 117559 [43] P.P. Li, B. Wen, F. Yu, M.Y. Zhu, X.H. Guo, Y. Han, L.H. Kang, X. Huang, J.M. Dan, F.H. Ouyang, B. Dai, High efficient nickel/vermiculite catalyst prepared via microwave irradiation-assisted synthesis for carbon monoxide methanation, Fuel 171 (2016) 263-269 [44] Z.Q. Liu, Q.Z. Xu, J.Y. Wang, N. Li, S.H. Guo, Y.Z. Su, H.J. Wang, J.H. Zhang, S. Chen, Facile hydrothermal synthesis of urchin-like NiCO2O4 spheres as efficient electrocatalysts for oxygen reduction reaction, Int. J. Hydrog. Energy 38 (16) (2013) 6657-6662 [45] Zeng Y, Lai Z, Han Y, Zhang H, Xie S, Lu X, Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries, Adv Mater (2018) e1802396 [46] C.Z. Zhu, S.F. Fu, D. Du, Y.H. Lin, Facilely tuning porous NiCO2O4Nanosheets with metal valence-state alteration and abundant oxygen vacancies as robust electrocatalysts towards water splitting, Chem. Eur. J. 22 (12) (2016) 4000-4007 [47] Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L, Plasma-engraved Co3 O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction, Angew Chem Int Ed Engl 55 (17) (2016) 5277-5281 [48] G. Ou, Y.S. Xu, B. Wen, R. Lin, B.H. Ge, Y. Tang, Y.W. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W.X. Chen, J. Li, H. Wu, L.M. Liu, Y.D. Li, Tuning defects in oxides at room temperature by lithium reduction, Nat Commun 9 (1) (2018) 1302 [49] Y.H. Han, J.X. Zhao, Y.H. Quan, S.N. Yin, S.P. Wu, J. Ren, Highly efficient LaxCe1-xO2-x/2 nanorod-supported nickel catalysts for CO methanation:effect of La addition, Energy Fuels 35 (4) (2021) 3307-3314 [50] K. Liu, X.L. Xu, J.W. Xu, X.Z. Fang, L. Liu, X. Wang, The distributions of alkaline earth metal oxides and their promotional effects on Ni/CeO2 for CO2 methanation, J. CO2 Util. 38 (2020) 113-124 [51] S.X. Lin, Z.W. Hao, J.D. Shen, X. Chang, S.Y. Huang, M.S. Li, X.B. Ma, Enhancing the CO2 methanation activity of Ni/CeO2 via activation treatment-determined metal-support interaction, J. Energy Chem. 59 (2021) 334-342 [52] P. Jiang, J.X. Zhao, Y.H. Han, X.H. Wang, Y.L. Pei, Z.L. Zhang, Y.M. Liu, J. Ren, Highly active and dispersed Ni/Al2O3 catalysts for CO methanation prepared by the cation-anion double-hydrolysis method:effects of zr, Fe, and Ce promoters, Ind. Eng. Chem. Res. 58 (27) (2019) 11728-11738 [53] X.S. Zhang, N. Rui, X.Y. Jia, X. Hu, C.J. Liu, Effect of decomposition of catalyst precursor on Ni/CeO2 activity for CO methanation, Chin. J. Catal. 40 (4) (2019) 495-503 [54] X.X. Han, J.Z. Yang, B.Y. Han, W. Sun, C.F. Zhao, Y.X. Lu, Z. Li, J. Ren, Density functional theory study of the mechanism of CO methanation on Ni4/t-ZrO2 catalysts:Roles of surface oxygen vacancies and hydroxyl groups, Int. J. Hydrog. Energy 42 (1) (2017) 177-192 [55] M.H. Zhu, P.F. Tian, X.Y. Cao, J.C. Chen, T.C. Pu, B.F. Shi, J. Xu, J. Moon, Z.L. Wu, Y.F. Han, Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation, Appl. Catal. B:Environ. 282 (2021) 119561 [56] V. Fung, F. Polo-Garzon, Z.L. Wu, D.E. Jiang, Exploring perovskites for methane activation from first principles, Catal. Sci. Technol. 8 (3) (2018) 702-709 [57] F. Wang, S. He, H. Chen, B. Wang, L.R. Zheng, M. Wei, D.G. Evans, X. Duan, Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation, J. Am. Chem. Soc. 138 (19) (2016) 6298-6305 [58] J.J. Gao, C.M. Jia, M.J. Zhang, F.N. Gu, G.W. Xu, F.B. Su, Effect of nickel nanoparticle size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas, Catal. Sci. Technol. 3 (8) (2013) 2009 [59] Y.B. Yao, F. Yu, J.B. Li, J.W. Li, Y.Q. Li, Z.J. Wang, M.Y. Zhu, Y.L. Shi, B. Dai, X.H. Guo, Two-dimensional NiAl layered double oxides as non-noble metal catalysts for enhanced CO methanation performance at low temperature, Fuel 255 (2019) 115770 [60] A.M. Zhao, W.Y. Ying, H.T. Zhang, H.F. Ma, D.Y. Fang, Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation, Catal. Commun. 17 (2012) 34-38 [61] F.H. Meng, Z. Li, F.K. Ji, M.H. Li, Effect of ZrO2 on catalyst structure and catalytic methanation performance over Ni-based catalyst in slurry-bed reactor, Int. J. Hydrog. Energy 40 (29) (2015) 8833-8843 [62] R. Razzaq, H.W. Zhu, L. Jiang, U. Muhammad, C.S. Li, S.J. Zhang, Catalytic methanation of CO and CO2 In coke oven gas over Ni-Co/ZrO2-CeO2, Ind. Eng. Chem. Res. 52 (6) (2013) 2247-2256 [63] Z.F. Qin, J. Ren, M.Q. Miao, Z. Li, J.Y. Lin, K.C. Xie, The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating:Effect of amorphous NiO formation, Appl. Catal. B:Environ. 164 (2015) 18-30 [64] M.A. Lucchini, A. Testino, A. Kambolis, C. Proff, C. Ludwig, Sintering and coking resistant core-shell microporous silica-nickel nanoparticles for CO methanation:Towards advanced catalysts production, Appl. Catal. B:Environ. 182 (2016) 94-101 [65] S. Abate, K. Barbera, E. Giglio, F. Deorsola, S. Bensaid, S. Perathoner, R. Pirone, G. Centi, Synthesis, characterization, and activity pattern of Ni-Al hydrotalcite catalysts in CO2 methanation, Ind. Eng. Chem. Res. 55 (30) (2016) 8299-8308 [66] M.I. Zaki, M.A. Hasan, F.A. Al-Sagheer, L. Pasupulety, Surface chemistry of acetone on metal oxides:IR observation of acetone adsorption and consequent surface reactions on silica-alumina versus silica and alumina, Langmuir 16 (2) (2000) 430-436 [67] X.P. Guo, A. Traitangwong, M.X. Hu, C.C. Zuo, V. Meeyoo, Z.J. Peng, C.S. Li, Carbon dioxide methanation over nickel-based catalysts supported on various mesoporous material, Energy Fuels 32 (3) (2018) 3681-3689 [68] B. Miao, S.S.K. Ma, X. Wang, H.B. Su, S.H. Chan, Catalysis mechanisms of CO2 and CO methanation, Catal. Sci. Technol. 6 (12) (2016) 4048-4058 [69] Y. Varun, I. Sreedhar, S.A. Singh, Highly stable M/NiO-MgO (M=Co, Cu and Fe) catalysts towards CO2 methanation, Int. J. Hydrog. Energy 45 (53) (2020) 28716-28731 [70] M.P. Andersson, F. Abild-Pedersen, I.N. Remediakis, T. Bligaard, G. Jones, J. Engbæk, O. Lytken, S. Horch, J.H. Nielsen, J. Sehested, J.R. Rostrup-Nielsen, J.K. Nørskov, I. Chorkendorff, Structure sensitivity of the methanation reaction:H2-induced CO dissociation on nickel surfaces, J. Catal. 255 (1) (2008) 6-19 [71] Fajín JLC, Gomes JRB, D. S. Cordeiro MN, Mechanistic Study of Carbon Monoxide Methanation over Pure and Rhodium- or Ruthenium-Doped Nickel Catalysts, J Phys Chem C 119 (2015) 16537-16551 [72] Y.X. Wang, Y. Su, M.Y. Zhu, L.H. Kang, Mechanism of CO methanation on the Ni4/γ-Al2O3 and Ni3Fe/γ-Al2O3 catalysts:a density functional theory study, Int. J. Hydrog. Energy 40 (29) (2015) 8864-8876 |
[1] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[2] | Ping Zhang, Chao Gong, Tao Zhou, Peng Du, Jieyu Song, Mengyang Shi, Xuerui Wang, Xuehong Gu. Helium extraction from natural gas using DD3R zeolite membranes [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 122-129. |
[3] | Denglong Ma, Ruitao Wu, Zekang Li, Kang Cen, Jianmin Gao, Zaoxiao Zhang. A new method to forecast multi-time scale load of natural gas based on augmentation data-machine learning model [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 166-175. |
[4] | Pengtao Guo, Miao Chang, Tongan Yan, Yuxiao Li, Dahuan Liu. A pillared-layer metal-organic framework for efficient separation of C3H8/C2H6/CH4 in natural gas [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 10-16. |
[5] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 64-72. |
[6] | Xinran Zhang, Hua Shang, Jiangfeng Yang, Libo Li, Jinping Li. Nitrogen rejection from low quality natural gas by pressure swing adsorption experiments and simulation using dynamic adsorption isotherms [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 120-129. |
[7] | Tongtong Zhang, Xiaohui She, Yulong Ding. A power plant for integrated waste energy recovery from liquid air energy storage and liquefied natural gas [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 242-257. |
[8] | Weichen Zhu, Yuxuan He, Minman Tong, Xiaoyong Lai, Shijia Liang, Xu Wang, Yanjuan Li, Xiao Yan. Exploring the methods on improving CH4 delivery performance to surpass the Advanced Research Project Ageney-Energy target [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 118-124. |
[9] | Luchao Jin, Yongming He, Guobing Zhou, Qiuhao Chang, Liangliang Huang, Xingru Wu. Natural gas density under extremely high pressure and high temperature: Comparison of molecular dynamics simulation with corresponding state model [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 2-9. |
[10] | Qihui Hu, Xiaoyu Wang, Wuchang Wang, Yuxing Li, Shuai Liu. Growth and aggregation micromorphology of natural gas hydrate particles near gas-liquid interface under stirring condition [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 65-77. |
[11] | Yanping Duan, Pengfei Wang, Wenge Yang, Xia Zhao, Hong Hao, Ruijie Wu, Jie Huang. Experimental and density functional theory computational evaluation of poly(N-vinyl caprolactam-co-butyl methacrylate) kinetic hydrate inhibitors [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 237-244. |
[12] | Zirong Lin, Shuangfeng Wang, Shuxun Fu, Jiepeng Huo. Numerical study on effects of the cofferdam area in liquefied natural gas storage tank on the leakage and diffusion characteristics of natural gas [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 228-241. |
[13] | Ting He, Wensheng Lin. Design and analysis of dual mixed refrigerant processes for high-ethane content natural gas liquefaction [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 354-364. |
[14] | Muhammad Salman, Liangliang Zhang, Jianfeng Chen. A computational simulation study for techno-economic comparison of conventional and stripping gas methods for natural gas dehydration [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2285-2293. |
[15] | Guobin Zhao, Qingrong Zheng, Xuan Zhang, Weidong Zhang. Adsorption equilibrium and the effect of honeycomb heat exchanging device on charge/discharge characteristic of methane on MIL-101(Cr) and activated carbon [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1964-1972. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 101
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||