Chinese Journal of Chemical Engineering ›› 2022, Vol. 49 ›› Issue (9): 253-264.DOI: 10.1016/j.cjche.2021.09.012
• Regular • Previous Articles
Linyang Wang1, Qiang Wang1, Yongqi Liu1, Qiuxiang Yao2, Ming Sun1, Xiaoxun Ma1
Received:
2021-05-02
Revised:
2021-08-17
Online:
2022-10-19
Contact:
Ming Sun,E-mail:sunming1982@126.com;Xiaoxun Ma,E-mail:13772424852@163.com
Supported by:
Linyang Wang1, Qiang Wang1, Yongqi Liu1, Qiuxiang Yao2, Ming Sun1, Xiaoxun Ma1
通讯作者:
Ming Sun,E-mail:sunming1982@126.com;Xiaoxun Ma,E-mail:13772424852@163.com
基金资助:
Linyang Wang, Qiang Wang, Yongqi Liu, Qiuxiang Yao, Ming Sun, Xiaoxun Ma. Catalytic conversion of asphaltenes to BTXN using metal-loaded modified HZSM-5[J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 253-264.
Linyang Wang, Qiang Wang, Yongqi Liu, Qiuxiang Yao, Ming Sun, Xiaoxun Ma. Catalytic conversion of asphaltenes to BTXN using metal-loaded modified HZSM-5[J]. 中国化学工程学报, 2022, 49(9): 253-264.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.09.012
[1] E.A. Uslamin, H. Saito, Y. Sekine, E.J.M. Hensen, N. Kosinov, Different mechanisms of ethane aromatization over Mo/ZSM-5 and Ga/ZSM-5 catalysts, Catal. Today 369 (2021) 184-192 [2] D.Y. Miao, Y. Ding, T. Yu, J. Li, X.L. Pan, X.H. Bao, Selective synthesis of benzene, toluene, and xylenes from syngas, ACS Catal 10 (13) (2020) 7389-7397 [3] P. Duchêne, L. Mencarelli, A. Pagot, Optimization approaches to the integrated system of catalytic reforming and isomerization processes in petroleum refinery, Comput. Chem. Eng. 141 (2020) 107009.http://dx.doi.org/10.1016/j.compchemeng.2020.107009 [4] S. Suganuma, N. Katada, Innovation of catalytic technology for upgrading of crude oil in petroleum refinery, Fuel Process. Technol. 208 (2020) 106518 [5] C.D. Zhang, G. Kwak, H.G. Park, K.W. Jun, Y.J. Lee, S.C. Kang, S. Kim, Light hydrocarbons to BTEX aromatics over hierarchical HZSM-5:Effects of alkali treatment on catalytic performance, Microporous Mesoporous Mater 276 (2019) 292-301 [6] G.G. Oseke, A.Y. Atta, B. Mukhtar, B.J. El-Yakubu, B.O. Aderemi, Increasing the catalytic stability of microporous Zn/ZSM-5 with copper for enhanced propane aromatization, J. King Saud Univ.-Eng. Sci. (2020)http://dx.doi.org/10.1016/j.jksues.2020.07.014 [7] T.W. Lan, T. Gao, L.Y. Qiang, W.L. Sun, T. Wang, Z.Z. Zhang, H. Chang, X.X. Ma, Effect of Ni-ZSM-5 zeolites on product distribution of Shendong coal pyrolysis, Chem. Ind. Eng. Prog. 38 (10) (2019) 4511-4519. (in Chinese) [8] T.L. Liu, J.P. Cao, X.Y. Zhao, J.X. Wang, X.Y. Ren, X. Fan, Y.P. Zhao, X.Y. Wei, In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst, Fuel Process. Technol. 160 (2017) 19-26.http://dx.doi.org/10.1016/j.fuproc.2017.02.012 [9] X.J. Feng, X.J. Min, H.A. Zheng, Y.J. Fan, Y.B. Li, X.X. Kong, C. Wan, M. Sun, X.X. Ma, Reaction (formaldehyde) separation and analysis of n-heptane extraction residue from heavy oil of medium and low temperature coal tar, J. Fuel Chem. Technol. 46 (1) (2018) 15-26 [10] M.M. Ma, X.P. Su, X.J. Min, H.A. Zheng, Y.J. Fan, C. Wan, M. Sun, X.X. Ma, Migration law of metal elements during distillation of low temperature coal tar, Chem. Ind. Eng. Progr. 37 (9) (2018) 3355-3361 [11] X.Y. Ren, J.P. Cao, X.Y. Zhao, Z. Yang, Y.J. Wang, Q. Chen, M. Zhao, X.Y. Wei, Catalytic conversion of lignite pyrolysis volatiles to light aromatics over ZSM-5:SiO2/Al2O3 ratio effects and mechanism insights, J. Anal. Appl. Pyrolysis 139 (2019) 22-30.http://dx.doi.org/10.1016/j.jaap.2019.01.003 [12] J. Sjöblom, S. Simon, Z.H. Xu, Model molecules mimicking asphaltenes, Adv. Colloid Interface Sci. 218 (2015) 1-16 [13] M. Sun, Y.B. Li, S. Sha, J.W. Gao, R.C. Wang, Y.J. Zhang, Q.Q. Hao, H.Y. Chen, Q.X. Yao, X.X. Ma, The composition and structure of n-hexane insoluble-hot benzene soluble fraction and hot benzene insoluble fraction from low temperature coal tar, Fuel 262 (2020) 116511.http://dx.doi.org/10.1016/j.fuel.2019.116511 [14] Z.R. Zhang, J.K. Volkman, H. Lu, C.B. Zhai, Sources of organic matter in the Eocene Maoming oil shale in SE China as shown by stepwise pyrolysis of asphaltene, Org. Geochem. 112 (2017) 119-126.http://dx.doi.org/10.1016/j.orggeochem.2017.07.007 [15] W.L. Jia, S.S. Chen, X.X. Zhu, P.A. Peng, Z.Y. Xiao, D/H ratio analysis of pyrolysis-released n-alkanes from asphaltenes for correlating oils from different sources, J. Anal. Appl. Pyrolysis 126 (2017) 99-104.http://dx.doi.org/10.1016/j.jaap.2017.06.020 [16] S. Shin, S.I. Im, E.H. Kwon, J.G. Na, N.S. Nho, K.B. Lee, Kinetic study on the nonisothermal pyrolysis of oil sand bitumen and its maltene and asphaltene fractions, J. Anal. Appl. Pyrolysis 124 (2017) 658-665.http://dx.doi.org/10.1016/j.jaap.2016.12.016 [17] Y.Q. Liu, Q.X. Yao, M. Sun, X.X. Ma, Catalytic fast pyrolysis of coal tar asphaltene over zeolite catalysts to produce high-grade coal tar:an analytical Py-GC/MS study, J. Anal. Appl. Pyrolysis 156 (2021) 105127.http://dx.doi.org/10.1016/j.jaap.2021.105127 [18] D.J. Mihalcik, C.A. Mullen, A.A. Boateng, Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components, J. Anal. Appl. Pyrolysis. 92 (1) (2011) 224-232 [19] P.S. Rezaei, H. Shafaghat, W.M.A.W. Daud, Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis:a review, Appl. Catal. A:Gen. 469 (2014) 490-511.http://dx.doi.org/10.1016/j.apcata.2013.09.036 [20] P.C. Shi, G.Z. Chang, X.L. Tan, Q.J. Guo, Enhancement of bituminous coal pyrolysis for BTX production by Fe2O3/MoSi2-HZSM-5 catalysts, J. Anal. Appl. Pyrolysis 150 (2020) 104867.http://dx.doi.org/10.1016/j.jaap.2020.104867 [21].L.Z. Sun, X.D. Zhang, L. Chen, B.F. Zhao, S.X. Yang, X.P. Xie, Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts, J. Anal. Appl. Pyrolysis 121 (2016) 342-346 [22] Z.W. Li, X.S. Yang, Y.X. Han, L. Rong, Hydrocracking of Jatropha oil to aromatic compounds over the LaNiMo/ZSM-5 catalyst, Int. J. Hydrog. Energy 45 (41) (2020) 21364-21379 [23] E. Saraçoğlu, B.B. Uzun, E. Apaydın-Varol, Upgrading of fast pyrolysis bio-oil over Fe modified ZSM-5 catalyst to enhance the formation of phenolic compounds, Int. J. Hydrog. Energy 42 (33) (2017) 21476-21486 [24] P. Li, D. Li, H.P. Yang, X.H. Wang, H.P. Chen, Effects of Fe-, Zr-, and Co-modified zeolites and pretreatments on catalytic upgrading of biomass fast pyrolysis vapors, Energy Fuels 30 (4) (2016) 3004-3013 [25] W. Xie, J.H. Liang, H.M. MorganJr, X.D. ZhangJr, K. WangJr, H.P. MaoJr, Q. BuJr, Ex-situ catalytic microwave pyrolysis of lignin over Co/ZSM-5 to upgrade bio-oil, J. Anal. Appl. Pyrolysis 132 (2018) 163-170.http://dx.doi.org/10.1016/j.jaap.2018.03.003 [26] L. Zhao, B.J. Shen, J.S. Gao, C.M. Xu, Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion, J. Catal. 258 (1) (2008) 228-234 [27] M. Sun, X.X. Ma, Q.X. Yao, R.C. Wang, Y.X. Ma, G. Feng, J.X. Shang, L. Xu, Y.H. Yang, GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar, Energy Fuels 25 (3) (2011) 1140-1145 [28] M. Sun, D. Zhang, Q.X. Yao, Y.Q. Liu, X.P. Su, C.Q. Jia, X.X. Ma, Separation and composition analysis of GC/MS analyzable and unanalyzable parts from coal tar, Energy Fuels 32 (7) (2018) 7404-7411 [29] M. Sun, X.X. Ma, W. Cao, P.P. Du, Y.H. Yang, L. Xu, Effect of polymerization with paraformaldehyde on thermal reactivity of >300℃ fraction from low temperature coal tar, Thermochimica Acta 538 (2012) 48-54 [30] Q.Y. Wang, Y.X. Wei, S.T. Xu, M.Z. Zhang, S.H. Meng, D. Fan, Y. Qi, J.Z. Li, Z.X. Yu, C.Y. Yuan, Y.L. He, S.L. Xu, J.R. Chen, J.B. Wang, B.L. Su, Z.M. Liu, Synthesis of mesoporous ZSM-5 using a new gemini surfactant as a mesoporous directing agent:A crystallization transformation process, Chin. J. Catal. 35 (10) (2014) 1727-1739 [31] J. Li, X.Y. Li, G.Q. Zhou, W. Wang, C.W. Wang, S. Komarneni, Y.J. Wang, Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions, Appl. Catal. A:Gen. 470 (2014) 115-122.http://dx.doi.org/10.1016/j.apcata.2013.10.040 [32] M.Y. Chai, R.H. Liu, Y.F. He, Effects of SiO2/Al2O3 ratio and Fe loading rate of Fe-modified ZSM-5 on selection of aromatics and kinetics of corn stalk catalytic pyrolysis, Fuel Process. Technol. 206 (2020) 106458 [33] G.L. Li, L.J. Yan, R.F. Zhao, F. Li, Improving aromatic hydrocarbons yield from coal pyrolysis volatile products over HZSM-5 and Mo-modified HZSM-5, Fuel 130 (2014) 154-159.http://dx.doi.org/10.1016/j.fuel.2014.04.027 [34] C. Zhang, F. Guo, J.Q. Xv, Y.H. Qin, J.Q. Xie, Influence of Ce and Zr modified Mn/ZSM-5 catalyst on C3H6-SCR reaction performance, J. Chin. Ceram. Soc. 47 (4) (2019) 486-493 [35] L. Rodríguez-González, F. Hermes, M. Bertmer, E. Rodríguez-Castellón, A. Jiménez-López, U. Simon, The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy, Appl. Catal. A:Gen. 328 (2) (2007) 174-182 [36] J. Lei, R.Y. Niu, S. Wang, J.P. Li, The Pd/Na-ZSM-5 catalysts with different Si/Al ratios on low concentration methane oxidation, Solid State Sci. 101 (2020) 106097.http://dx.doi.org/10.1016/j.solidstatesciences.2019.106097 [37] X. Hong, Y.H. Li, C. Cao, B. Fan, Y.Y. Pang, D. Zhang, K. Tang, Synthesis of ZSM-5 zeolites with different silica/alumina ratios and their performance in the removal of aniline and pyridine from model fuel through adsorption, J. Fuel. Chem. Techno. 46 (10) (2018) 1184-1192 [38] A.Q. Zheng, Z.L. Zhao, S. Chang, Z. Huang, H.X. Wu, X.B. Wang, F. He, H.B. Li, Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass, J. Mol. Catal. A:Chem. 383-384 (2014) 23-30 [39] D.K. Shen, J. Zhao, R. Xiao, Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst:Effect of lignin sources and catalyst species, Energy Convers. Manag. 124 (2016) 61-72.http://dx.doi.org/10.1016/j.enconman.2016.06.067 [40] B. Li, S.J. Li, N. Li, H.Y. Chen, W.J. Zhang, X.H. Bao, B.X. Lin, Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization, Microporous Mesoporous Mater 88 (1-3) (2006) 244-253 [41] C.Y. Bi, X. Wang, Q. You, B.Y. Liu, Z. Li, J.B. Zhang, Q.Q. Hao, M. Sun, H.Y. Chen, X.X. Ma, Catalytic upgrading of coal pyrolysis volatiles by Ga-substituted mesoporous ZSM-5, Fuel 267 (2020) 117217 [42] Nishu, C. Li, M.Y. Chai, M.M. Rahman, Y.K. Li, M. Sarker, R.H. Liu, Performance of alkali and Ni-modified ZSM-5 during catalytic pyrolysis of extracted hemicellulose from rice straw for the production of aromatic hydrocarbons, Renew. Energy 175 (2021) 936-951.http://dx.doi.org/10.1016/j.renene.2021.05.005 [43] T. Armaroli, L.J. Simon, M. Digne, T. Montanari, M. Bevilacqua, V. Valtchev, J. Patarin, G. Busca, Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites, Appl. Catal. A:Gen. 306 (2006) 78-84.http://dx.doi.org/10.1016/j.apcata.2006.03.030 [44] S. Chu, L.N. Yang, X.C. Guo, L.L. Dong, X.F. Chen, Y.R. Li, X.D. Mu, The influence of pore structure and Si/Al ratio of HZSM-5 zeolites on the product distributions of α-cellulose hydrolysis, Mol. Catal. 445 (2018) 240-247.http://dx.doi.org/10.1016/j.mcat.2017.11.032 [45] L. Shirazi, E. Jamshidi, M.R. Ghasemi, The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size, Cryst. Res. Technol. 43 (12) (2008) 1300-1306 [46] Z.Y. Zakaria, J. Linnekoski, N.A.S. Amin, Catalyst screening for conversion of glycerol to light olefins, Chem. Eng. J. 207-208 (2012) 803-813 [47] B. Gu, J.P. Cao, F. Wei, X.Y. Zhao, X.Y. Ren, C. Zhu, Z.X. Guo, J. Bai, W.Z. Shen, X.Y. Wei, Nitrogen migration mechanism and formation of aromatics during catalytic fast pyrolysis of sewage sludge over metal-loaded HZSM-5, Fuel 244 (2019) 151-158 [48] W.C. Xu, B.X. Chen, X.D. Jiang, F. Xu, X. Chen, L.M. Chen, J.L. Wu, M.L. Fu, D.Q. Ye, Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5:Acidity/basicity, catalytic activity and reaction mechanism, J. Hazard. Mater. 387 (2020) 122004.http://dx.doi.org/10.1016/j.jhazmat.2019.122004 [49] X. Cheng, P. Yan, X.Z. Zhang, F. Yang, C.Y. Dai, D.P. Li, X.X. Ma, Enhanced methane dehydroaromatization in the presence of CO2 over Fe- and Mg-modified Mo/ZSM-5, Mol. Catal. 437 (2017) 114-120.http://dx.doi.org/10.1016/j.mcat.2017.05.011 [50] Z.N. Liao, K.W. Zha, W.J. Sun, Z. Huang, H.L. Xu, W. Shen, Catalytic combustion of propane over Pt-Mo/ZSM-5 catalyst:the promotional effects of molybdenum, Catalysts 10 (12) (2020) 1377.https://doi.org/10.3390/catal10121377 [51] D.M. Yao, D.C. Wang, L.J. Jin, Y. Li, H. Yang, T.T. Wang, H.Q. Hu, Preparation of Ce-Mn/Fe2 O 3 catalysts for steam catalytic cracking of coal tar, ChemistrySelect 3 (44) (2018) 12537-12543 [52] M. Hosseinpour, M. Akizuki, A. Yoko, Y. Oshima, M. Soltani, Novel synthesis and characterization of Fe-ZSM-5 nanocrystals in hot compressed water for selective catalytic reduction of NO with NH3, Microporous Mesoporous Mater 292 (2020) 109708 [53] Z.Z. Zhang, H. Chang, T. Gao, T.W. Lan, J.B. Zhang, M. Sun, L. Xu, X.X. Ma, Catalytic upgrading of coal pyrolysis volatiles over metal-loaded HZSM-5 catalysts in a fluidized bed reactor, J. Anal. Appl. Pyrolysis 139 (2019) 31-39.http://dx.doi.org/10.1016/j.jaap.2019.01.005 [54] E.F. Iliopoulou, S.D. Stefanidis, K.G. Kalogiannis, A. Delimitis, A.A. Lappas, K.S. Triantafyllidis, Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite, Appl. Catal. B:Environ. 127 (2012) 281-290.http://dx.doi.org/10.1016/j.apcatb.2012.08.030 [55] B. Xu, W.Y. Lu, Z. Sun, T. He, A. Goroncy, Y.L. Zhang, M.H. Fan, High-quality oil and gas from pyrolysis of Powder River Basin coal catalyzed by an environmentally-friendly, inexpensive composite iron-sodium catalysts, Fuel Process. Technol. 167 (2017) 334-344.http://dx.doi.org/10.1016/j.fuproc.2017.05.028 [56] W.L. Wang, B.J. Liu, X.J. Zeng, Catalytic cracking of C4 hydrocarbons on ZSM-5 molecular sieves with low SiO2/Al 2 O 3 molar ratio, Acta Phys.-Chimica Sin. 24 (11) (2008) 2102-2107 [57] A. De Lucas, J.L. Valverde, F. Dorado, A. Romero, I. Asencio, Influence of the ion exchanged metal (Cu, Co, Ni and Mn) on the selective catalytic reduction of NOX over mordenite and ZSM-5, J. Mol. Catal. A:Chem. 225 (1) (2005) 47-58 [58] M. Sun, D. Zhang, M.H. Huang, J. Chen, X. Tang, C. He, X.X. Ma, Properties and carbonization behavior of asphalt modified with the THF-soluble fraction of a coal liquefaction residue, Petroleum Sci. Technol. 35 (7) (2017) 674-680 [59].M. Sun, X.X. Ma, B. Lv, X.M. Dai, Y. Yao, Y.Y. Liu, M. He, X.L. Zhao, Gradient separation of 300℃ distillate from low-temperature coal tar based on formaldehyde reactions, Fuel 160 (2015) 16-23 [60] M. Sun, L.Y. Wang, J.J. Zhong, Q.X. Yao, H.Y. Chen, L.Y. Jiao, Q.Q. Hao, X.X. Ma, Chemical modification with aldehydes on the reduction of toxic PAHs derived from low temperature coal tar pitch, J. Anal. Appl. Pyrolysis 148 (2020) 104822.http://dx.doi.org/10.1016/j.jaap.2020.104822 [61] L.J. Yan, X.J. Kong, R.F. Zhao, F. Li, K.C. Xie, Catalytic upgrading of gaseous tars over zeolite catalysts during coal pyrolysis, Fuel Process. Technol. 138 (2015) 424-429.http://dx.doi.org/10.1016/j.fuproc.2015.05.030 [62] J. Chen, M. Sun, X.M. Dai, Y. Yao, Y.Y. Liu, M. He, X.X. Ma, Asphalt modification with direct coal liquefaction residue based on benzaldehyde crosslinking agent, J. Fuel. Chem. Technol. 43 (9) (2015) 1052-1060 [63] G.X. Dai, S.R. Wang, Q. Zou, S.Q. Huang, Improvement of aromatics production from catalytic pyrolysis of cellulose over metal-modified hierarchical HZSM-5, Fuel Process. Technol. 179 (2018) 319-323.http://dx.doi.org/10.1016/j.fuproc.2018.07.023 [64] E.F. Iliopoulou, S. Stefanidis, K. Kalogiannis, A.C. Psarras, A. Delimitis, K.S. Triantafyllidis, A.A. Lappas, Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours, Green Chem 16 (2) (2014) 662-674 [65] N.H. Zainan, S.C. Srivatsa, F.H. Li, S. Bhattacharya, Quality of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris, Fuel 223 (2018) 12-19 [66] V.R. Choudhary, S.A.R. Mulla, S. Banerjee, Aromatization of n-heptane over H-AlMFI, Ga/H-AlMFI, H-GaMFI and H-GaAlMFI zeolite catalysts:Influence of zeolitic acidity and non-framework gallium, Microporous Mesoporous Mater 57 (3) (2003) 317-322 [67] J.L. Agudelo, E.J.M. Hensen, S.A. Giraldo, L.J. Hoyos, Influence of steam-calcination and acid leaching treatment on the VGO hydrocracking performance of faujasite zeolite, Fuel Process. Technol. 133 (2015) 89-96 [68] J. Jae, G.A. Tompsett, A.J. Foster, K.D. Hammond, S.M. Auerbach, R.F. Lobo, G.W. Huber, Investigation into the shape selectivity of zeolite catalysts for biomass conversion, J. Catal. 279 (2) (2011) 257-268 [69] Nishu, R.H. Liu, M.M. Rahman, M. Sarker, M.Y. Chai, C. Li, J.M. Cai, A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5:Focus on structure, Fuel Process. Technol. 199 (2020) 106301. [70] W.L. Li, H.Y. Wang, X.Z. Wu, L.E. Betancourt, C.Y. Tu, M.J. Liao, X.Y. Cui, F. Li, J.J. Zheng, R.F. Li, Ni/hierarchical ZSM-5 zeolites as promising systems for phenolic bio-oil upgrading:Guaiacol hydrodeoxygenation, Fuel 274 (2020) 117859.http://dx.doi.org/10.1016/j.fuel.2020.117859 [71] S.P. Zhang, H.L. Zhang, X.Z. Liu, S.G. Zhu, L.L. Hu, Q. Zhang, Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst, Fuel Process. Technol. 175 (2018) 17-25.http://dx.doi.org/10.1016/j.fuproc.2018.03.002 [72] P.A. Lazaridis, A.P. Fotopoulos, S.A. Karakoulia, K.S. Triantafyllidis, Catalytic fast pyrolysis of kraft lignin with conventional, mesoporous and nanosized ZSM-5 zeolite for the production of alkyl-phenols and aromatics, Front. Chem. 6 (2018) 295. https://doi.org/10.3389/fchem.2018.00295 [73] K. Murata, Y.Y. Liu, M. Inaba, I. Takahara, Catalytic fast pyrolysis of jatropha wastes, J. Anal. Appl. Pyrolysis 94 (2012) 75-82.http://dx.doi.org/10.1016/j.jaap.2011.11.008 [74] E.G. Derouane, J.C. Védrine, R.R. Pinto, P.M. Borges, L. Costa, M.A.N.D.A. Lemos, F. Lemos, F.R. Ribeiro, The acidity of zeolites:Concepts, measurements and relation to catalysis:A review on experimental and theoretical methods for the study of zeolite acidity, Catal. Rev. 55 (4) (2013) 454-515 [75] A. Ausavasukhi, Y. Huang, A.T. To, T. Sooknoi, D.E. Resasco, Hydrodeoxygenation of m-cresol over gallium-modified beta zeolite catalysts, J. Catal. 290 (2012) 90-100 [76] A. Sridhar, M. Rahman, A. Infantes-Molina, B.J. Wylie, C.G. Borcik, S.J. Khatib, Bimetallic Mo-Co/ZSM-5 and Mo-Ni/ZSM-5 catalysts for methane dehydroaromatization:A study of the effect of pretreatment and metal loadings on the catalytic behavior, Appl. Catal. A:Gen. 589 (2020) 117247.http://dx.doi.org/10.1016/j.apcatb.2012.08.030 [77] A.K. Aboul-Gheit, M.S. El-Masry, A.E. Awadallah, Oxygen free conversion of natural gas to useful hydrocarbons and hydrogen over monometallic Mo and bimetallic Mo-Fe, Mo-Co or Mo-Ni/HZSM-5 catalysts prepared by mechanical mixing, Fuel Process. Technol. 102 (2012) 24-29.http://dx.doi.org/10.1016/j.fuproc.2012.04.017 [78] S. Burns, J.S.J. Hargreaves, P. Pal, K.M. Parida, S. Parija, The effect of dopants on the activity of MoO3/ZSM-5 catalysts for the dehydroaromatisation of methane, Catal. Today 114 (4) (2006) 383-387 |
[1] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[2] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[3] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[4] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[5] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[6] | Zhenzhou Ma, Xu Hou, Bochong Chen, Liu Zhao, Enxian Yuan, Tingting Cui. Experiment and modeling of coke formation and catalyst deactivation in n-heptane catalytic cracking over HZSM-5 zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 165-172. |
[7] | Jinchang Liu, Chenyang Shen, Lujie Huang, Tinghao Fang, Yaping Li, Dingcheng Liang, Qiang Xie. Preparation of pitch precursor with excellent spinnability for general-purpose carbon fibre using coal tar pitch as raw material [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 22-28. |
[8] | Xueguang Li, Mengyan Yu, Changfa Zhang, Xiangtong Li, Guangqing Liu, Jianjun Dai, Chunbao Zhou, Yang Liu, Jie Fu, Yingwen Zhang, Bang Yao. Co-pyrolysis of soybean soapstock with iron slag/aluminum scrap, and characterization and analysis of their products [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 25-36. |
[9] | Xiaobin Chen, Yuting Tang, Chuncheng Ke, Chaoyue Zhang, Sichun Ding, Xiaoqian Ma. CO2 capture by double metal modified CaO-based sorbents from pyrolysis gases [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 40-49. |
[10] | Shaoxiang Cai, Han Yan, Qiuyi Wang, He Han, Ru Li, Zhichao Lou. Top-down strategy for bamboo lignocellulose-derived carbon heterostructure with enhanced electromagnetic wave dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 360-369. |
[11] | Peter Keliona Wani Likun, Huiyan Zhang, Yuyang Fan. Improving hydrocarbons production via catalytic co-pyrolysis of torrefied-biomass with plastics and dual catalytic pyrolysis [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 196-209. |
[12] | Xu Hou, Bochong Chen, Zhenzhou Ma, Jintao Zhang, Yuanhang Ning, Donghe Zhang, Liu Zhao, Enxian Yuan, Tingting Cui. Empirical modeling of normal/cyclo-alkanes pyrolysis to produce light olefins [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 389-398. |
[13] | Shen Wang, Xiaokang Pei, Yong Luo, Guangwen Chu, Haikui Zou, Baochang Sun. Preparation of lithium carbonate by microwave assisted pyrolysis [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 146-153. |
[14] | Yanfeng Shen, Yongfeng Hu, Meijun Wang, Weiren Bao, Liping Chang, Kechang Xie. Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 70-82. |
[15] | Tingting Jiao, Huiling Fan, Shoujun Liu, Song Yang, Wenguang Du, Pengzheng Shi, Chao Yang, Yeshuang Wang, Ju Shangguan. A review on nitrogen transformation and conversion during coal pyrolysis and combustion based on quantum chemical calculation and experimental study [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 107-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||