Chinese Journal of Chemical Engineering ›› 2023, Vol. 53 ›› Issue (1): 381-401.DOI: 10.1016/j.cjche.2021.12.027
• Review • Previous Articles Next Articles
Tianqi Fang1, Mengyuan Liu1, Zhaozhe Li1, Li Xiong1, Dongpei Zhang1, Kexin Meng1, Xiaolei Qu1, Guangyu Zhang2, Xin Jin1, Chaohe Yang1
Received:
2021-08-15
Revised:
2021-11-08
Online:
2023-04-08
Published:
2023-01-28
Contact:
Xin Jin,E-mail:jamesjinxin@upc.edu.cn
Supported by:
Tianqi Fang1, Mengyuan Liu1, Zhaozhe Li1, Li Xiong1, Dongpei Zhang1, Kexin Meng1, Xiaolei Qu1, Guangyu Zhang2, Xin Jin1, Chaohe Yang1
通讯作者:
Xin Jin,E-mail:jamesjinxin@upc.edu.cn
基金资助:
Tianqi Fang, Mengyuan Liu, Zhaozhe Li, Li Xiong, Dongpei Zhang, Kexin Meng, Xiaolei Qu, Guangyu Zhang, Xin Jin, Chaohe Yang. Hydrothermal conversion of fructose to lactic acid and derivatives: Synergies of metal and acid/base catalysts[J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 381-401.
Tianqi Fang, Mengyuan Liu, Zhaozhe Li, Li Xiong, Dongpei Zhang, Kexin Meng, Xiaolei Qu, Guangyu Zhang, Xin Jin, Chaohe Yang. Hydrothermal conversion of fructose to lactic acid and derivatives: Synergies of metal and acid/base catalysts[J]. 中国化学工程学报, 2023, 53(1): 381-401.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.12.027
[1] L.J.R. Nunes, T.P. Causer, D. Ciolkosz, Biomass for energy: A review on supply chain management models, Renew. Sustain. Energy Rev. 120 (2020) 109658. [2] G.M. Lari, G. Pastore, M. Haus, Y.Y. Ding, S. Papadokonstantakis, C. Mondelli, J. Pérez-Ramírez, Environmental and economical perspectives of a glycerol biorefinery, Energy Environ. Sci. 11 (5) (2018) 1012–1029. [3] X. Jin, B. Yin, Q. Xia, T.Q. Fang, J. Shen, L.Q. Kuang, C.H. Yang, Catalytic transfer hydrogenation of biomass-derived substrates to value-added chemicals on dual-function catalysts: opportunities and challenges, ChemSusChem 12 (1) (2019) 71–92. [4] J. Zhang, C. Xu, X.Y. Chen, X. Ruan, Y. Zhang, H.J. Xu, Y. Guo, J.L. Xu, P.M. Lv, Z.M. Wang, Engineered bacillus subtilis harbouring gene of d-tagatose 3-epimerase for the bioconversion of d-fructose into d-psicose through fermentation, Enzyme Microb. Technol. 136 (2020) 109531. [5] L.Q. Wang, H.Q. Guo, Q.L. Xie, J.G. Wang, B. Hou, L.T. Jia, J.L. Cui, D.B. Li, Conversion of fructose into furfural or 5-hydroxymethylfurfural over HY zeolites selectively in γ-butyrolactone, Appl. Catal. A Gen. 572 (2019) 51–60. [6] M. Dusselier, P. van Wouwe, A. Dewaele, E. Makshina, B.F. Sels, Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis, Energy Environ. Sci. 6 (5) (2013) 1415. [7] L.Y. Li, F. Shen, R.L. Smith, X.H. Qi, Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature, Green Chem. 19 (1) (2017) 76–81. [8] K.I. Tominaga, K. Nemoto, Y. Kamimura, Y. Hirano, T. Takahashi, H. Tsuneki, K. Sato, Synthesis of methyl lactate from cellulose catalyzed by mixed Lewis acid systems, Fuel Process. Technol. 199 (2020) 106288. [9] M.S. Holm, S. Saravanamurugan, E. Taarning, Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts, Science 328 (5978) (2010) 602–605. [10] L.S. Yang, X.K. Yang, E. Tian, H.F. Lin, Direct conversion of cellulose into ethyl lactate in supercritical ethanol-water solutions, ChemSusChem 9 (1) (2016) 36–41. [11] X.L. Zhao, T. Wen, J.J. Zhang, J.F. Ye, Z.H. Ma, H. Yuan, X.Z. Ye, Y. Wang, Fe-Doped SnO2 catalysts with both BA and LA sites: facile preparation and biomass carbohydrates conversion to methyl lactate MLA, RSC Adv. 7 (35) (2017) 21678–21685. [12] B. Murillo, B. Zornoza, O. de la Iglesia, C. Téllez, J. Coronas, Chemocatalysis of sugars to produce lactic acid derivatives on zeolitic imidazolate frameworks, J. Catal. 334 (2016) 60–67. [13] C. Gao, C.Q. Ma, P. Xu, Biotechnological routes based on lactic acid production from biomass, Biotechnol. Adv. 29 (6) (2011) 930–939. [14] X.Y. Yan, F.M. Jin, K. Tohji, A. Kishita, H. Enomoto, Hydrothermal conversion of carbohydrate biomass to lactic acid, AIChE J. 56 (10) (2010) 2727–2733. [15] F.A. Castillo Martinez, E.M. Balciunas, J.M. Salgado, J.M. Domínguez González, A. Converti, R.P. de Souza Oliveira, Lactic acid properties, applications and production: A review, Trends Food Sci. Technol. 30 (1) (2013) 70–83. [16] P. Mäki-Arvela, I.L. Simakova, T. Salmi, D.Y. Murzin, Production of lactic acid/lactates from biomass and their catalytic transformations to commodities, Chem. Rev. 114 (3) (2014) 1909–1971. [17] T. Ghaffar, M. Irshad, Z. Anwar, T. Aqil, Z. Zulifqar, A. Tariq, M. Kamran, N. Ehsan, S. Mehmood, Recent trends in lactic acid biotechnology: A brief review on production to purification, J. Radiat. Res. Appl. Sci. 7 (2014) 222–229. [18] J.S. White, Sucrose, HFCS, and Fructose: History, Manufacture, Composition, Applications, and Production, J.M. Rippen, ed., Humana Press, New York (2014). [19] K. Parker, M. Salas, V.C. Nwosu, High fructose corn syrup: Production, uses and public health concerns, Biotechnol. Mol. Biol. Rev. 5 (2010) 71–78. [20] L.M. Hanover, J.S. White, Manufacturing, composition, and applications of fructose, Am. J. Clin. Nutr. 58 (5 Suppl) (1993) 724S–732S. [21] G.A. Bray, S.J. Nielsen, B.M. Popkin, Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity, Am. J. Clin. Nutr. 79 (4) (2004) 537–543. [22] R.S. Singh, K. Chauhan, A. Pandey, C. Larroche, Biocatalytic strategies for the production of high fructose syrup from inulin, Bioresour. Technol. 260 (2018) 395–403. [23] E. Ricca, V. Calabrò, S. Curcio, G. Iorio, The state of the art in the production of fructose from inulin enzymatic hydrolysis, Crit. Rev. Biotechnol. 27 (3) (2007) 129–145. [24] M. Amaral-Fonseca, R. Morellon-Sterling, R. Fernández-Lafuente, P.W. Tardioli, Optimization of simultaneous saccharification and isomerization of dextrin to high fructose syrup using a mixture of immobilized amyloglucosidase and glucose isomerase, Catal. Today 362 (2021) 175–183. [25] J.K. Sun, H.L. Li, H.Z. Huang, B. Wang, L.P. Xiao, G.Y. Song, Integration of enzymatic and heterogeneous catalysis for one-pot production of fructose from glucose, ChemSusChem 11 (7) (2018) 1157–1162. [26] P. Wattanapaphawong, P. Reubroycharoen, A. Yamaguchi, Conversion of cellulose into lactic acid using zirconium oxide catalysts, RSC Adv. 7 (30) (2017) 18561–18568. [27] B. Tang, S. Li, W.C. Song, E.C. Yang, X.J. Zhao, N.J. Guan, L.D. Li, Fabrication of hierarchical Sn-beta zeolite as efficient catalyst for conversion of cellulosic sugar to methyl lactate, ACS Sustainable Chem. Eng. 8 (9) (2020) 3796–3808. [28] D. Steinbach, A. Klier, A. Kruse, J. Sauer, S. Wild, M. Zanker, Isomerization of glucose to fructose in hydrolysates from lignocellulosic biomass using hydrotalcite, Processes 8 (6) (2020) 644. [29] M.A. Yatoo, S. Saravanamurugan, Tin grafted on modified alumina-catalyzed isomerisation of glucose to fructose, Appl. Catal. A Gen. 582 (2019) 117094. [30] H. Huang, X.G. Meng, W.W. Yu, L.Y. Chen, Y.Y. Wu, High selective isomerization of glucose to fructose catalyzed by amidoximed polyacrylonitrile, ACS Omega 6 (30) (2021) 19860–19866. [31] P. Zhu, S. Meier, S. Saravanamurugan, A. Riisager, Modification of commercial Y zeolites by alkaline-treatment for improved performance in the isomerization of glucose to fructose, Mol. Catal. 510 (2021) 111686. [32] A.T.C.R. Silva, K.C.L. Martinez, A.B.N. Brito, M. Giulietti, Separation of glucose and fructose by freezing crystallization, Cryst. Res. Technol. 45 (10) (2010) 1032–1034. [33] Tetsujiro Kubo, Ryoki Tatuki, Separation of fructose and glucose, US Pat., 3666647 (1972). [34] A.P. Carneiro, O. Rodríguez, E.A. Macedo, Fructose and glucose dissolution in ionic liquids: solubility and thermodynamic modeling, Ind. Eng. Chem. Res. 52 (9) (2013) 3424–3435. [35] I.M. Alnashef, M.H. Gaily, S.M. Al-Zahrani, A.E. Abasaeed, Method for separating fructose and glucose, US Pat., 7942972 (2009). [36] A.P. Carneiro, O. Rodríguez, E.A. Macedo, Fructose and glucose dissolution in ionic liquids: solubility and thermodynamic modeling, Ind. Eng. Chem. Res. 52 (9) (2013) 3424–3435. [37] Y.L. Cheng, T.Y. Lee, Separation of fructose and glucose mixture by zeolite Y, Biotechnol. Bioeng. 40 (4) (1992) 498–504. [38] B.K. Dwivedi, S.K.Raniwala, Process for the manufacture of crystalline fructose, US Pat., 4199373 (1980). [39] F.K. Forsberg, L.Hamalainen, A.J. Melaja, J.J. Virtanen, pH adjustment in fructose crystallization for increased yield, US Pat., 3883365 (1975). [40] T. Yamauchi, Method for obtaining anhydrous fructose crystals, US Pat., 3928062 (1975). [41] B.K. Dwivedi, S.K. Raniwala, Process of preparing crystalline fructose from high fructose corn syrup, US Pat., 4199374 (1980). [42] G.A. Day, Production of crystalline fructose, US Pat., 4724006 (1988). [43] C. E. Schollmeier, Semi-crystalline fructose, US Pat., 4517021 (1985). [44] High-Fructose Corn Syrup Production and Prices, (n.d.). https://www.ers.usda.gov/topics/crops/sugar-sweeteners/background.aspx#hfcs. [45] X. Liu, Development pattern and regional characteristics of global high fructose Ssweeteners production, Sugar Crops China. 43 (2021) 76–81. [46] Sugar and Sweeteners Yearbook Tables, 2020. https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables/. [47] G. Portillo Perez, A. Mukherjee, M.J. Dumont, Insights into HMF catalysis, J. Ind. Eng. Chem. 70 (2019) 1–34. [48] S.F. Mayer, H. Falcón, R. Dipaola, P. Ribota, L. Moyano, S. Morales-delaRosa, R. Mariscal, J.M. Campos-Martín, J.A. Alonso, J.L.G. Fierro, Dehydration of fructose to HMF in presence of (H3O)xSbxTe(2-x)O6 (x = 1, 1.1, 1.25) in H2O-MIBK, Mol. Catal. 481 (2020) 110276. [49] J.B. Heo, Y.S. Lee, C.H. Chung, Raw plant-based biorefinery: A new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF, Biotechnol. Adv. 37 (8) (2019) 107422. [50] H. Li, S. Yang, A. Riisager, A. Pandey, R.S. Sangwan, S. Saravanamurugan, R. Luque, Zeolite and zeotype-catalysed transformations of biofuranic compounds, Green Chem. 18 (21) (2016) 5701–5735. [51] R. de Clercq, M. Dusselier, B.F. Sels, Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass: advances, challenges and prospects, Green Chem. 19 (21) (2017) 5012–5040. [52] J.L. Cui, J.J. Tan, T.S. Deng, X.J. Cui, Y.L. Zhu, Y.W. Li, Conversion of carbohydrates to furfural via selective cleavage of the carbon–carbon bond: the cooperative effects of zeolite and solvent, Green Chem. 18 (6) (2016) 1619–1624. [53] W.L. Zhang, J.W. Huang, M. Jia, C.E. Guang, T. Zhang, W.M. Mu, Characterization of a novel d-lyxose isomerase from Thermoflavimicrobium dichotomicum and its application for D-mannose production, Process. Biochem. 83 (2019) 131–136. [54] S.H. Lee, S.H. Hong, K.R. Kim, D.K. Oh, High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction, Biotechnol. Lett. 39 (8) (2017) 1141–1148. [55] W.H. Kim, J.A. Kang, H.R. Lee, A.Y. Park, P. Chun, B. Lee, J. Kim, J.A. Kim, L.S. Jeong, H.R. Moon, Efficient and practical synthesis of l-hamamelose, Carbohydr. Res. 344 (17) (2009) 2317–2321. [56] Z. Hricovíniová, M. Hricovíni, L. Petrus, Stereospecific molybdic acid-catalyzed isomerization of d-fructose to branched-chain aldose. The synthesis of d-hamamelose, Chem. Pap.-SLOVAK Acad. Sci. 52 (1998) 692–698. [57] J.H. Yu, D.H. Lee, Y.J. Oh, K.C. Han, Y.W. Ryu, J.H. Seo, Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer, Appl. Biochem. Biotechnol. 131 (1–3) (2006) 870–879. [58] M.J. Ahmed, B.H. Hameed, Hydrogenation of glucose and fructose into hexitols over heterogeneous catalysts: a review, J. Taiwan Inst. Chem. Eng. 96 (2019) 341–352. [59] E. Herweg, M. Schöpping, K. Rohr, A. Siemen, O. Frank, T. Hofmann, U. Deppenmeier, J. Büchs, Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans, Bioresour. Technol. 259 (2018) 164–172. [60] X. Jin, M. Zhao, J. Shen, W.J. Yan, L.M. He, P.S. Thapa, S.Q. Ren, B. Subramaniam, R.V. Chaudhari, Exceptional performance of bimetallic Pt1Cu3/TiO2 nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid, J. Catal. 330 (2015) 323–329. [61] X. Jin, M. Zhao, M. Vora, J. Shen, C. Zeng, W.J. Yan, P.S. Thapa, B. Subramaniam, R.V. Chaudhari, Synergistic effects of bimetallic PtPd/TiO2 nanocatalysts in oxidation of glucose to glucaric acid: structure dependent activity and selectivity, Ind. Eng. Chem. Res. 55 (11) (2016) 2932–2945. [62] A.S. Amarasekara, L.H. Nguyen, N.C. Okorie, S.M. Jamal, A two-step efficient preparation of a renewable dicarboxylic acid monomer 5, 5'-[oxybis(methylene)] bis[2-furancarboxylic acid]from d-fructose and its application in polyester synthesis, Green Chem. 19 (6) (2017) 1570–1575. [63] I. Izquierdo, M.T. Plaza, V. Yáñez, Polyhydroxylated pyrrolidines: synthesis from d-fructose of new tri-orthogonally protected 2,5-dideoxy-2,5-iminohexitols, Tetrahedron 63 (6) (2007) 1440–1447. [64] A. Das, A. Bhaumik, T. Pathak, Epoxides of d-fructose and l-sorbose: A convenient class of “click” functionality for the synthesis of a rare family of amino- and thio-sugars, Carbohydr. Res. 487 (2020) 107870. [65] A.P. Carneiro, O. Rodríguez, E.A. Macedo, Fructose and glucose dissolution in ionic liquids: solubility and thermodynamic modeling, Ind. Eng. Chem. Res. 52 (9) (2013) 3424–3435. [66] N.Y. Khalil, H.K. AlRabiah, S.S. AL Rashoud, A. Bari, T.A. Wani, Chapter Seven - Topiramate: Comprehensive profile, in: H.G.B.T.-P. of D.S. Brittain Excipients and Related Methodology (Ed.), Academic Press, Beijing, 2019: pp. 333–378. [67] M. Koruyucu, F. Saltan, G. Kök, H. Akat, Y. Salman, Synthesis, characterization and polymerization of novel sugars based on methacrylate, Iran. Polym. J. 25 (5) (2016) 455–463. [68] J.Z. Zhang, X. Liu, M. Sun, X.H. Ma, Y. Han, Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium, ACS Catal. 2 (8) (2012) 1698–1702. [69] Z.C. Tan, L. Shi, Y.F. Zan, G. Miao, S.L. Li, L.Z. Kong, S.G. Li, Y.H. Sun, Crucial role of support in glucose selective conversion into 1, 2-propanediol and ethylene glycol over Ni-based catalysts: A combined experimental and computational study, Appl. Catal. A Gen. 560 (2018) 28–36. [70] K.J. Jem, B.W. Tan, The development and challenges of poly (lactic acid) and poly (glycolic acid), Adv. Ind. Eng. Polym. Res. 3 (2) (2020) 60–70. [71] A.P. Djukić-Vuković, L.V. Mojović, M.S. Vukašinović-Sekulić, M.B. Rakin, S.B. Nikolić, J.D. Pejin, M.L. Bulatović, Effect of different fermentation parameters on l-lactic acid production from liquid distillery stillage, Food Chem. 134 (2) (2012) 1038–1043. [72] R. Datta, M. Henry, Lactic acid: recent advances in products, processes and technologies—a review, J. Chem. Technol. Biotechnol. 81 (7) (2006) 1119–1129. [73] A. Komesu, J.A.R. de Oliveira, L.H. da S. Martins, M.R. Wolf Maciel, R. Maciel Filho, Lactic Acid Production to Purification: A Review, BioResources. 12 (2017) 4364–4383. [74] J. Passlick–Deetjen, The importance of biocompatibility in peritoneal dialysis solutions, Perit. Dial. Int. 13 (1993) 101–105. [75] H.C. Nam, W.H. Park, Eco-friendly poly(lactic acid) microbeads for cosmetics via melt electrospraying, Int. J. Biol. Macromol. 157 (2020) 734–742. [76] J. Vijayakumar, R. Aravindan, T. Viruthagiri, Recent trends in the production, purification and application of lactic acid, Chem. Biochem. Eng. Q. 22 (2008) 245–264. [77] C.O. Tuck, E. Pérez, I.T. Horváth, R.A. Sheldon, M. Poliakoff, Valorization of biomass: deriving more value from waste, Science 337 (6095) (2012) 695–699. [78] E.T.H. Vink, K.R. Rábago, D.A. Glassner, B. Springs, R.P. O'Connor, J. Kolstad, P.R. Gruber, The sustainability of NatureWorksTM polylactide polymers and ingeoTM polylactide fibers: an update of the future, Macromol. Biosci. 4 (6) (2004) 551–564. [79] A. Altan, Z. Aytac, T. Uyar, Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging, Food Hydrocoll. 81 (2018) 48–59. [80] L. Lim, K. Cink, T. Vanyo, Processing of poly (lactic acid), John Wiley & Sons Inc., Hoboken, 189–215 (2010). [81] A. Södergård, M. Stolt, Industrial production of high molecular weight poly(lactic acid), John Wiley & Sons Inc., Hoboken, 27–41 (2010). [82] K.W. Kim, S.I. Woo, Synthesis of high-molecular-weight poly(L-lactic acid) by direct polycondensation, Macromol. Chem. Phys. 203 (15) (2002) 2245–2250. [83] A. Takasu, Y. Narukawa, T. Hirabayashi, Direct dehydration polycondensation of lactic acid catalyzed by water-stable Lewis acids, J. Polym. Sci. A Polym. Chem. 44 (18) (2006) 5247–5253. [84] J.F. Shan, H. Liu, K. Lu, S.H. Zhu, J.F. Li, J.G. Wang, W.B. Fan, Identification of the dehydration active sites in glycerol hydrogenolysis to 1, 2-propanediol over Cu/SiO2 catalysts, J. Catal. 383 (2020) 13–23. [85] X.D. Wang, A.K. Beine, P.J.C. Hausoul, R. Palkovits, Mg(OH) 2-facilitated liquid-phase conversion of lactic acid into 1, 2-propanediol over Cu: an experimental and theoretical study, ChemSusChem 13 (1) (2020) 126–130. [86] V.L. Yfanti, A.A. Lemonidou, Effect of hydrogen donor on glycerol hydrodeoxygenation to 1, 2-propanediol, Catal. Today 355 (2020) 727–736. [87] L. He, Q. Huang, H. Kun, Z. Xiufang, J. Zhang, Y. Shan, G. Tan, L. Huaju, W. Chaoyu, Y. Li, Preparation method for 2, 3-pentanedione, US Pat., 10259766 (2019). [88] X.L. Li, L.W. Sun, W.X. Zou, P. Cao, Z. Chen, C.M. Tang, L. Dong, Efficient conversion of bio-lactic acid to 2, 3-pentanedione on cesium-doped hydroxyapatite catalysts with balanced acid-base sites, ChemCatChem 9 (24) (2017) 4621–4627. [89] M. Eckert, G. Fleischmann, R. Jira, H.M. Bolt, K. Golka, Acetaldehyde, in: Ullmanns Encycl. Ind. Chem., American Cancer Society, 2006. https://doi.org/10.1002/14356007.a01_031.pub2. [90] L. Wang, D.C. Higgins, Y.F. Ji, C.G. Morales-Guio, K.R. Chan, C. Hahn, T.F. Jaramillo, Selective reduction of CO to acetaldehyde with CuAg electrocatalysts, Proc. Natl. Acad. Sci. USA 117 (23) (2020) 12572–12575. [91] P. Baur, L.E. Davies, R. Pontzen, A. Rochling, Use of lactate esters for improving the action of agricultural pesticides, US Pat., 12066040 (2006). [92] Y. Sasson, O. Toledano, G. Levi-Ruso, Pesticidal composition comprising a lactate ester as crystal growth inhibitor, US Pat., 10507103 (2005). [93] Z.Q. Zhang, Y.X. Qu, S. Wang, J.D. Wang, Catalytic performance and characterization of silica supported sodium phosphates for the dehydration of methyl lactate to methyl acrylate andAcrylic acid, Ind. Eng. Chem. Res. 48 (20) (2009) 9083–9089. [94] M. Dusselier, P. van Wouwe, A. Dewaele, P.A. Jacobs, B.F. Sels, Shape-selective zeolite catalysis for bioplastics production, Science 349 (6243) (2015) 78–80. [95] M.A. Rasool, C. van Goethem, I.F.J. Vankelecom, Green preparation process using methyl lactate for cellulose-acetate-based nanofiltration membranes, Sep. Purif. Technol. 232 (2020) 115903. [96] C.S.M. Pereira, V.M.T.M. Silva, A.E. Rodrigues, Ethyl lactate as a solvent: Properties, applications and production processes–a review, Green Chem. 13 (10) (2011) 2658. [97] P. Pal, J. Sikder, S. Roy, L. Giorno, Process intensification in lactic acid production: A review of membrane based processes, Chem. Eng. Process. Process. Intensif. 48 (11–12) (2009) 1549–1559. [98] M.A. Abdel-Rahman, Y. Tashiro, K. Sonomoto, Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits, J. Biotechnol. 156 (4) (2011) 286–301. [99] K. Hofvendahl, B. Hahn-Hägerdal, Factors affecting the fermentative lactic acid production from renewable resources(1), Enzyme Microb. Technol. 26 (2–4) (2000) 87–107. [100] Y. Wang, H.Y. Meng, D. Cai, B. Wang, P.Y. Qin, Z. Wang, T.W. Tan, Improvement of l-lactic acid productivity from sweet sorghum juice by repeated batch fermentation coupled with membrane separation, Bioresour. Technol. 211 (2016) 291–297. [101] C. Idler, J. Venus, B. Kamm, Microorganisms for the Production of Lactic Acid and Organic LactatesMicroorg. Biorefineries (2015): 225–273. [102] R. Alves de Oliveira, A. Komesu, C.E. Vaz Rossell, R. Maciel Filho, Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects, Biochem. Eng. J. 133 (2018) 219–239. [103] C.M. Nguyen, J.S. Kim, H.J. Hwang, M.S. Park, G.J. Choi, Y.H. Choi, K.S. Jang, J.C. Kim, Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli, Bioresour. Technol. 110 (2012) 552–559. [104] M.A. Abdel-Rahman, Y. Tashiro, K. Sonomoto, Recent advances in lactic acid production by microbial fermentation processes, Biotechnol. Adv. 31 (6) (2013) 877–902. [105] Y. Wang, Y. Tashiro, K. Sonomoto, Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits, J. Biosci. Bioeng. 119 (1) (2015) 10–18. [106] P.S. Panesar, J.F. Kennedy, D.N. Gandhi, K. Bunko, Bioutilisation of whey for lactic acid production, Food Chem. 105 (1) (2007) 1–14. [107] X.B. Xu, W.J. Zhang, X. Gu, Z.C. Guo, J. Song, D.A. Zhu, Y.B. Liu, Y.N. Liu, G. Xue, X. Li, J. Makinia, Stabilizing lactate production through repeated batch fermentation of food waste and waste activated sludge, Bioresour. Technol. 300 (2020) 122709. [108] H. Zhang, H. Li, S. Yang, Lactic acid/lactates production from biomass over chemocatalytic strategies. Biomass, Biofuels, Biochemicals. Amsterdam: Elsevier, 2020: 227–257. [109] Z.C. Tang, D.G. Boer, A. Syariati, M. Enache, P. Rudolf, H.J. Heeres, P.P. Pescarmona, Base-free conversion of glycerol to methyl lactate using a multifunctional catalytic system consisting of Au-Pd nanoparticles on carbon nanotubes and Sn-MCM-41-XS, Green Chem. 21 (15) (2019) 4115–4126. [110] R.K. Pazhavelikkakath Purushothaman, J. Van Haveren, I. Melián-Cabrera, E.R.H. Van Eck, H.J. Heeres, Base-free, one-pot chemocatalytic conversion of glycerol to methyl lactate using supported gold catalysts, ChemSusChem 7 (4) (2014) 1140–1147. [111] Z.C. Tang, S.L. Fiorilli, H.J. Heeres, P.P. Pescarmona, Multifunctional heterogeneous catalysts for the selective conversion of glycerol into methyl lactate, ACS Sustain. Chem. Eng. 6 (8) (2018) 10923–10933. [112] T.L. Lu, X.M. Fu, L.P. Zhou, Y.L. Su, X.M. Yang, L. Han, J.F. Wang, C.Y. Song, Promotion effect of Sn on Au/Sn-USY catalysts for one-pot conversion of glycerol to methyl lactate, ACS Catal. 7 (10) (2017) 7274–7284. [113] J.F. Li, D. Li, C.L. Liu, C.L. Xu, W.S. Dong, The conversion of glycerol to methyl lactate catalyzed by tin-exchanged montmorillonite-supported gold catalysts, J. Chem. Technol. Biotechnol. 94 (6) (2019) 1958–1967. [114] L.P. Zhou, Y.Y. Xu, X.M. Yang, T.L. Lu, L. Han, Utilization of biodiesel byproduct glycerol: production of methyl lactate over Au/CuO and Sn-Beta binary catalyst under mild reaction conditions, Energy Convers. Manag. 196 (2019) 277–285. [115] H.X. Yin, H.B. Yin, A.L. Wang, L.Q. Shen, Catalytic conversion of glycerol to lactic acid over graphite-supported nickel nanoparticles and reaction kinetics, J. Ind. Eng. Chem. 57 (2018) 226–235. [116] L. Qiu, H.X. Yin, H.B. Yin, A.L. Wang, Catalytic conversion of glycerol to lactic acid over hydroxyapatite-supported metallic NiO nanoparticles, J. Nanosci. Nanotechnol. 18 (7) (2018) 4734–4745. [117] H.X. Yin, H.B. Yin, A.L. Wang, L.Q. Shen, Y. Liu, Y. Zheng, Catalytic conversion of glycerol to lactic acid over metallic copper nanoparticles and reaction kinetics, J. Nanosci. Nanotechnol. 17 (2) (2017) 1255–1266. [118] R. Palacio, S. Torres, S. Royer, A.S. Mamede, D. López, D. Hernández, CuO/CeO2 catalysts for glycerol selective conversion to lactic acid, Dalton Trans. 47 (13) (2018) 4572–4582. [119] L.Q. Shen, Z.Y. Yu, D. Zhang, H.B. Yin, C.T. Wang, A.L. Wang, Glycerol valorization to lactic acid catalyzed by hydroxyapatite-supported palladium particles, J. Chem. Technol. Biotechnol. 94 (1) (2019) 204–215. [120] H.X. Yin, C.H. Zhang, H.B. Yin, D.Z. Gao, L.Q. Shen, A.L. Wang, Hydrothermal conversion of glycerol to lactic acid catalyzed by Cu/hydroxyapatite, Cu/MgO, and Cu/ZrO2 and reaction kinetics, Chem. Eng. J. 288 (2016) 332–343. [121] R. Palacio, S. Torres, D. Lopez, D. Hernandez, Selective glycerol conversion to lactic acid on Co3O4/CeO2 catalysts, Catal. Today 302 (2018) 196–202. [122] D. Verma, R. Insyani, Y.W. Suh, S.M. Kim, S.K. Kim, J. Kim, Direct conversion of cellulose to high-yield methyl lactate over Ga-doped Zn/H-nanozeolite Y catalysts in supercritical methanol, Green Chem. 19 (8) (2017) 1969–1982. [123] M. Orazov, M.E. Davis, Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures, Proc. Natl. Acad. Sci. USA 112 (38) (2015) 11777–11782. [124] B.W. Zhao, X.Y. Yue, H. Li, J.F. Li, C.L. Liu, C.L. Xu, W.S. Dong, Lanthanum-modified phosphomolybdic acid as an efficient catalyst for the conversion of fructose to lactic acid, React. Kinetics Mech. Catal. 125 (1) (2018) 55–69. [125] L.P. Zhou, L. Wu, H.J. Li, X.M. Yang, Y.L. Su, T. Lu, J. Xu, A facile and efficient method to improve the selectivity of methyl lactate in the chemocatalytic conversion of glucose catalyzed by homogeneous Lewis acid, J. Mol. Catal. A Chem. 388-389 (2014) 74–80. [126] W.P. Deng, P. Wang, B.J. Wang, Y.L. Wang, L.F. Yan, Y.Y. Li, Q.H. Zhang, Z.X. Cao, Y. Wang, Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)–Sn(II) catalysts, Green Chem. 20 (3) (2018) 735–744. [127] S. Tolborg, I. Sádaba, C.M. Osmundsen, P. Fristrup, M.S. Holm, E. Taarning, Tin-containing silicates: alkali salts improve methyl lactate yield from sugars, ChemSusChem 8 (4) (2015) 613–617. [128] J. Zhang, L. Wang, G.X. Wang, F. Chen, J. Zhu, C.T. Wang, C.Q. Bian, S.X. Pan, F.S. Xiao, Hierarchical Sn-beta zeolite catalyst for the conversion of sugars to alkyl lactates, ACS Sustainable Chem. Eng. 5 (4) (2017) 3123–3131. [129] X.M. Yang, B. Lv, T.L. Lu, Y.L. Su, L.P. Zhou, Promotion effect of Mg on a post-synthesized Sn-Beta zeolite for the conversion of glucose to methyl lactate, Catal. Sci. Technol. 10 (3) (2020) 700–709. [130] X.M. Yang, Y.L. Zhang, L.P. Zhou, B.B. Gao, T.L. Lu, Y.L. Su, J. Xu, Production of lactic acid derivatives from sugars over post-synthesized Sn-Beta zeolite promoted by WO3, Food Chem. 289 (2019) 285–291. [131] L. Kong, Z. Shen, W. Zhang, M. Xia, M.Y. Gu, X.F. Zhou, Y.L. Zhang, Conversion of sucrose into lactic acid over functionalized Sn-beta zeolite catalyst by 3-aminopropyltrimethoxysilane, ACS Omega 3 (12) (2018) 17430–17438. [132] C.X. Ma, F.M. Jin, J.L. Cao, B. Wu, Hydrothermal conversion of carbohydrates into lactic acid with alkaline catalysts, 2010 4th International Conference on Bioinformatics and Biomedical Engineering. June 18-20, 2010, Chengdu, China. IEEE, (2010) 1–4. [133] Y.L. Wang, W.P. Deng, B.J. Wang, Q.H. Zhang, X.Y. Wan, Z.C. Tang, Y. Wang, C. Zhu, Z.X. Cao, G.C. Wang, H.L. Wan, Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water, Nat. Commun. 4 (2013) 2141. [134] M. Bicker, S. Endres, L. Ott, H. Vogel, Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production, J. Mol. Catal. A Chem. 239 (1–2) (2005) 151–157. [135] J. Wang, G.D. Yao, F.M. Jin, One-pot catalytic conversion of carbohydrates into alkyl lactates with Lewis acids in alcohols, Mol. Catal. 435 (2017) 82–90. [136] F.F. Wang, C.L. Liu, W.S. Dong, Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts, Green Chem. 15 (8) (2013) 2091. [137] S.G. Xu, Y. Wu, J.M. Li, T. He, Y. Xiao, C.Q. Zhou, C.W. Hu, Directing the simultaneous conversion of hemicellulose and cellulose in raw biomass to lactic acid, ACS Sustainable Chem. Eng. 8 (10) (2020) 4244–4255. [138] K. Nemoto, Y. Hirano, K.I. Hirata, T. Takahashi, H. Tsuneki, K.I. Tominaga, K. Sato, Cooperative In-Sn catalyst system for efficient methyl lactate synthesis from biomass-derived sugars, Appl. Catal. B Environ. 183 (2016) 8–17. [139] X.L. Lyu, L. Xu, J.C. Wang, X.Y. Lu, New insights into the NiO catalytic mechanism on the conversion of fructose to methyl lactate, Catal. Commun. 119 (2019) 46–50. [140] X.L. Lyu, L.X. Wang, X.J. Chen, L. Xu, J.C. Wang, S.G. Deng, X.Y. Lu, Enhancement of catalytic activity by γ-NiOOH for the production of methyl lactate from sugars in near-critical methanol solutions, Ind. Eng. Chem. Res. 58 (9) (2019) 3659–3665. [141] M. Xia, W.J. Dong, M.Y. Gu, C. Chang, Z. Shen, Y.L. Zhang, Synergetic effects of bimetals in modified beta zeolite for lactic acid synthesis from biomass-derived carbohydrates, RSC Adv. 8 (16) (2018) 8965–8975. [142] A.V. Ellis, M.A. Wilson, Carbon exchange in hot alkaline degradation of glucose, J. Org. Chem. 67 (24) (2002) 8469–8474. [143] D. Esposito, M. Antonietti, Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes, ChemSusChem 6 (6) (2013) 989–992. [144] H. Kishida, F.M. Jin, X.Y. Yan, T. Moriya, H. Enomoto, Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction, Carbohydr. Res. 341 (15) (2006) 2619–2623. [145] X.Y. Yan, F.M. Jin, K. Tohji, T. Moriya, H. Enomoto, Production of lactic acid from glucose by alkaline hydrothermal reaction, J. Mater. Sci. 42 (24) (2007) 9995–9999. [146] F.M. Jin, H. Enomoto, Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: Chemistry of acid/base-catalysed and oxidation reactions, Energy Environ. Sci. 4 (2) (2011) 382–397. [147] A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal Jr, J.W. Tester, Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies, Energy Environ. Sci. 1 (1) (2008) 32. [148] Z.J. Wang, C.J. Mo, S.X. Xu, S.S. Chen, T.S. Deng, W.B. Zhu, H.L. Wang, Ca(OH)2 induced a controlled-release catalytic system for the efficient conversion of high-concentration glucose to lactic acid, Mol. Catal. 502 (2021) 111406. [149] D.A. Cantero, L. Vaquerizo, C. Martinez, M.D. Bermejo, M.J. Cocero, Selective transformation of fructose and high fructose content biomass into lactic acid in supercritical water, Catal. Today 255 (2015) 80–86. [150] F.M. Jin, Z.Y. Zhou, H. Enomoto, T. Moriya, H. Higashijima, Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water, Chem. Lett. 33 (2) (2004) 126–127. [151] Z. Liu, W. Li, C.Y. Pan, P. Chen, H. Lou, X.M. Zheng, Conversion of biomass-derived carbohydrates to methyl lactate using solid base catalysts, Catal. Commun. 15 (1) (2011) 82–87. [152] Z.C. Tang, W.P. Deng, Y.L. Wang, E.Z. Zhu, X.Y. Wan, Q.H. Zhang, Y. Wang, Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations, ChemSusChem 7 (6) (2014) 1557–1567. [153] M. Dusselier, R. de Clercq, R. Cornelis, B.F. Sels, Tin triflate-catalyzed conversion of cellulose to valuable (α-hydroxy-) esters, Catal. Today 279 (2017) 339–344. [154] X. Lei, F.F. Wang, C.L. Liu, R.Z. Yang, W.S. Dong, One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst, Appl. Catal. A Gen. 482 (2014) 78–83. [155] F.F. Wang, Y. Wen, Y.X. Fang, H.B. Ji, Synergistic production of methyl lactate from carbohydrates using an ionic liquid functionalized Sn-containing catalyst, ChemCatChem 10 (18) (2018) 4154–4161. [156] Q. Sun, S. Wang, B. Aguila, X.J. Meng, S.Q. Ma, F.S. Xiao, Creating solvation environments in heterogeneous catalysts for efficient biomass conversion, Nat. Commun. 9 (1) (2018) 3236. [157] J.F. Feng, L. Zhang, J.C. Jiang, C. Hse, T.F. Shupe, H. Pan, Directional synergistic conversion of lignocellulosic biomass with matching-solvents for added-value chemicals, Green Chem. 21 (18) (2019) 4951–4957. [158] M.A. Mellmer, C. Sanpitakseree, B. Demir, K.W. Ma, W.A. Elliott, P. Bai, R.L. Johnson, T.W. Walker, B.H. Shanks, R.M. Rioux, M. Neurock, J.A. Dumesic, Effects of chloride ions in acid-catalyzed biomass dehydration reactions in polar aprotic solvents, Nat. Commun. 10 (1) (2019) 1132. [159] M.A.“. Mellmer, C. Sanpitakseree, B. Demir, P. Bai, K. Ma, M. Neurock, J.A. Dumesic, Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds, Nat. Catal. 1 (2018) 199–207. [160] G.N. Li, B. Wang, D.E. Resasco, Water-mediated heterogeneously catalyzed reactions, ACS Catal. 10 (2) (2020) 1294–1309. [161] Y. Xiao, S.G. Xu, W.Y. Zhang, J.M. Li, C.W. Hu, One-pot chemo-catalytic conversion of glucose to methyl lactate over In/γ-Al2O3 catalyst, Catal. Today 365 (2021) 249–256. [162] X.M. Yang, J.J. Bian, J.H. Huang, W.W. Xin, T.L. Lu, C. Chen, Y.L. Su, L.P. Zhou, F. Wang, J. Xu, Fluoride-free and low concentration template synthesis of hierarchical Sn-Beta zeolites: Efficient catalysts for conversion of glucose to alkyl lactate, Green Chem. 19 (3) (2017) 692–701. [163] X.M. Yang, Y. Liu, X.X. Li, J.X. Ren, L.P. Zhou, T.L. Lu, Y.L. Su, Synthesis of Sn-containing nanosized beta zeolite as efficient catalyst for transformation of glucose to methyl lactate, ACS Sustainable Chem. Eng. 6 (7) (2018) 8256–8265. [164] W.J. Dong, Z. Shen, B.Y. Peng, M.Y. Gu, X.F. Zhou, B. Xiang, Y.L. Zhang, Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-beta lewis acid-base catalyst, Sci. Rep. 6 (2016) 26713. [165] J. Zhu, Y. Zhu, L. Zhu, M. Rigutto, A. van der Made, C. Yang, S. Pan, L. Wang, L. Zhu, Y. Jin, Q. Sun, Q. Wu, X. Meng, D. Zhang, Y. Han, J. Li, Y. Chu, A. Zheng, S. Qiu, X. Zheng, F.S. Xiao, Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template, J. Am. Chem. Soc. 136 (6) (2014) 2503–2510. [166] M. Xia, W.J. Dong, Z. Shen, S.Z. Xiao, W.B. Chen, M.Y. Gu, Y.L. Zhang, Efficient production of lactic acid from biomass-derived carbohydrates under synergistic effects of indium and tin in In-Sn-Beta zeolites, Sustain. Energy Fuels 4 (10) (2020) 5327–5338. [167] Q. Guo, F.T. Fan, E.A. Pidko, W.N.P. van der Graaff, Z.C. Feng, C. Li, E.J.M. Hensen, Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid, ChemSusChem 6 (8) (2013) 1352–1356. [168] F. de Clippel, M. Dusselier, R. van Rompaey, P. Vanelderen, J. Dijkmans, E. Makshina, L. Giebeler, S. Oswald, G.V. Baron, J.F.M. Denayer, P.P. Pescarmona, P.A. Jacobs, B.F. Sels, Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts, J. Am. Chem. Soc. 134 (24) (2012) 10089–10101. [169] J.F. Pang, M.Y. Zheng, X.S. Li, L. Song, R.Y. Sun, J. Sebastian, A.Q. Wang, J.H. Wang, X.D. Wang, T. Zhang, Catalytic conversion of carbohydrates to methyl lactate using isolated tin sites in SBA-15, ChemistrySelect 2 (1) (2017) 309–314. [170] L.S. Yang, X.K. Yang, E. Tian, V. Vattipalli, W. Fan, H.F. Lin, Mechanistic insights into the production of methyl lactate by catalytic conversion of carbohydrates on mesoporous Zr-SBA-15, J. Catal. 333 (2016) 207–216. [171] S.W. Wang, Q.B. Wang, Selective conversion of glucose into lactic acid with immobilized ytterbium triflate, React. Kinetics Mech. Catal. 125 (2) (2018) 923–936. [172] S. Tallarico, P. Costanzo, S. Bonacci, A. Macario, M.L. di Gioia, M. Nardi, A. Procopio, M. Oliverio, Combined ultrasound/microwave chemocatalytic method for selective conversion of cellulose into lactic acid, Sci. Rep. 9 (1) (2019) 18858. [173] P.Y. Bi, L. Wu, W. Hong, Nb/HUSY as a highly active catalyst for the direct transformation of fructose to methyl lactate, Ceram. Int. 46 (15) (2020) 24045–24052. [174] H. Choudhary, S. Nishimura, K. Ebitani, Synthesis of high-value organic acids from sugars promoted by hydrothermally loaded Cu oxide species on magnesia, Appl. Catal. B Environ. 162 (2015) 1–10. [175] Y. Yan, Z.H. Zhang, S.M. Bak, S.Y. Yao, X.B. Hu, Z. Shadike, C.L. Do-Thanh, F. Zhang, H. Chen, X.L. Lyu, K.Q. Chen, Y.M. Zhu, X.Y. Lu, P. Ouyang, J. Fu, S. Dai, Confinement of ultrasmall cobalt oxide clusters within silicalite-1 crystals for efficient conversion of fructose into methyl lactate, ACS Catal. 9 (3) (2019) 1923–1930. [176] F.W. Wang, Z.B. Huo, Y.Q. Wang, F.M. Jin, Hydrothermal conversion of cellulose into lactic acid with nickel catalyst, Res. Chem. Intermed. 37 (2–5) (2011) 487–492. [177] Y.Q. Wang, F.M. Jin, M. Sasaki, Wahyudiono, F.W. Wang, Z.Z. Jing, M. Goto, Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions, AIChE J. 59 (6) (2013) 2096–2104. [178] S.P. Zhang, F.M. Jin, J.J. Hu, Z.B. Huo, Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions, Bioresour. Technol. 102 (2) (2011) 1998–2003. [179] Z.B. Huo, Y. Fang, D.Z. Ren, S. Zhang, G.D. Yao, X. Zeng, F.M. Jin, Selective conversion of glucose into lactic acid with transition metal ions in diluted aqueous NaOH solution, ACS Sustainable Chem. Eng. 2 (12) (2014) 2765–2771. [180] X.C. Wang, Y.L. Song, C.P. Huang, F.B. Liang, B.H. Chen, Lactic acid production from glucose over polymer catalysts in aqueous alkaline solution under mild conditions, Green Chem. 16 (9) (2014) 4234–4240. [181] S. Yamaguchi, M. Yabushita, M. Kim, J. Hirayama, K. Motokura, A. Fukuoka, K. Nakajima, Catalytic conversion of biomass-derived carbohydrates to methyl lactate by acid–base bifunctional γ-Al2O3, ACS Sustainable Chem. Eng. 6 (7) (2018) 8113–8117. [182] I. Tosi, A. Riisager, E. Taarning, P.R. Jensen, S. Meier, Kinetic analysis of hexose conversion to methyl lactate by Sn-Beta: effects of substrate masking and of water, Catal. Sci. Technol. 8 (8) (2018) 2137–2145. [183] N. Akiya, P.E. Savage, Roles of water for chemical reactions in high-temperature water, Chem. Rev. 102 (8) (2002) 2725–2750. [184] R.M. West, M.S. Holm, S. Saravanamurugan, J.M. Xiong, Z. Beversdorf, E. Taarning, C.H. Christensen, Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars, J. Catal. 269 (1) (2010) 122–130. [185] J. Barros dos Santos, N. José Araújo de Albuquerque, C. Lúcia de Paiva e Silva Zanta, M. Roberto Meneghetti, S. Margareti Plentz Meneghetti, Fructose conversion in the presence of Sn(IV) catalysts exhibiting high selectivity to lactic acid, RSC Adv. 5 (110) (2015) 90952–90959. [186] X.F. Liu, Z.G. Liu, Q.Y. Zhang, H.G. Wu, R. Wang, Hydrothermal catalytic conversion of glucose into lactic acid with acidic MIL-101(Fe), J. Chem. 2020 (2020) 1341563. [187] X.L. Lu, L.X. Wang, X.Y. Lu, Catalytic conversion of sugars to methyl lactate over Mg-MOF-74 in near-critical methanol solutions, Catal. Commun. 110 (2018) 23–27. [188] J.L. Ma, D.N. Jin, Y.C. Li, D.Q. Xiao, G.J. Jiao, Q. Liu, Y.Z. Guo, L.P. Xiao, X.H. Chen, X.Z. Li, J.H. Zhou, R.C. Sun, Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride, Appl. Catal. B Environ. 283 (2021) 119520. [189] J.L. Ma, Y.C. Li, D.N. Jin, Z. Ali, G.J. Jiao, J.Q. Zhang, S. Wang, R.C. Sun, Functional B@mCN-assisted photocatalytic oxidation of biomass-derived pentoses and hexoses to lactic acid, Green Chem. 22 (19) (2020) 6384–6392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||