Chinese Journal of Chemical Engineering ›› 2023, Vol. 54 ›› Issue (2): 1-10.DOI: 10.1016/j.cjche.2022.04.011
Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou
Received:
2021-11-13
Revised:
2022-04-22
Online:
2023-05-11
Published:
2023-02-28
Contact:
Zhiyong Zhou,E-mail:zhouzy@mail.buct.edu.cn
Supported by:
Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou
通讯作者:
Zhiyong Zhou,E-mail:zhouzy@mail.buct.edu.cn
基金资助:
Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials[J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 1-10.
Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials[J]. 中国化学工程学报, 2023, 54(2): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.04.011
[1] H.C. Lim, S. Feller, The density of low metal content rubidium, cesium, silver, and thallium borate glasses related to atomic arrangements, J. Non Cryst. Solids 94 (1) (1987) 36–44. [2] C. Calosso, S. Micalizio, A. Godone, E. Bertacco, F. Levi, Electronics for the pulsed rubidium clock: Design and characterization, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 54 (9) (2007) 1731–1740. [3] F.S. Wagner, Rubidium and rubidium compounds, In: Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., 1997, pp. 591–600, https://doi.org/10.1002/0471238961.1821020923010714.a01. [4] R.J.H. Miller, O. Manabe, B. Tamarappoo, S. Hayes, J.D. Friedman, P.J. Slomka, J. Patel, J.A. Kobashigawa, D.S. Berman, Comparative prognostic and diagnostic value of myocardial blood flow and myocardial flow reserve after cardiac transplantation, J. Nucl. Med. 61 (2) (2020) 249–255. [5] I. Georgescu, Rubidium round-the-clock, Nat. Chem. 7 (12) (2015) 1034. [6] P. Xing, C.Y. Wang, L. Wang, B.Z. Ma, Y.Q. Chen, G.D. Wang, Clean and efficient process for the extraction of rubidium from granitic rubidium ore, J. Clean. Prod. 196 (2018) 64–73. [7] L.A. Shelkovnikova, S.I. Kargov, O.T. Gavlina, V.A. Ivanov, G.N. Al’tshuler, Selectivity of ion exchangers in extracting cesium and rubidium from alkaline solutions, Russ. J. Phys. Chem. 87 (1) (2013) 125–128. [8] G. Naidu, T. Nur, P. Loganathan, J. Kandasamy, S. Vigneswaran, Selective sorption of rubidium by potassium cobalt hexacyanoferrate, Sep. Purif. Technol. 163 (2016) 238–246. [9] Y.Y. Fang, G.H. Zhao, W. Dai, L.Y. Ma, N. Ma, Enhanced adsorption of rubidium ion by a phenol@MIL-101(Cr) composite material, Microporous Mesoporous Mater. 251 (2017) 51–57. [10] W. Dai, Y.Y. Fang, L. Yu, G.H. Zhao, X.Y. Yan, Rubidium ion capture with composite adsorbent PMA@HKUST-1, J. Taiwan Inst. Chem. Eng. 84 (2018) 222–228. [11] G. Liu, H.Y. Mei, X.L. Tan, H.F. Zhang, H.N. Liu, M. Fang, X.K. Wang, Enhancement of Rb+ and Cs+ removal in 3D carbon aerogel-supported Na2Ti3O7, J. Mol. Liq. 262 (2018) 476–483. [12] Y.F. Zhu, H.F. Zhang, A.P. Hui, X.S. Ye, A.Q. Wang, Fabrication of porous adsorbent via eco-friendly Pickering-MIPEs polymerization for rapid removal of Rb+ and Cs+, J. Environ. Chem. Eng. 6 (1) (2018) 849–857. [13] Y.Y. Wang, J.C. Xu, X.C. Xu, D.Y. Yang, X.D. Zheng, J.M. Pan, T. Zhang, F.X. Qiu, C.X. Li, Mesoporous hollow silicon spheres modified with manganese ion sieve: Preparation and its application for adsorption of lithium and rubidium ions, Appl. Organomet. Chem. 32 (3) (2018) e4182. [14] Y.F. Zhu, W.B. Wang, H.F. Zhang, X.S. Ye, Z.J. Wu, A.Q. Wang, Fast and high-capacity adsorption of Rb+ and Cs+ onto recyclable magnetic porous spheres, Chem. Eng. J. 327 (2017) 982–991. [15] Y.F. Zhu, H.F. Zhang, W.B. Wang, X.S. Ye, Z.J. Wu, A.Q. Wang, Fabrication of a magnetic porous hydrogel sphere for efficient enrichment of Rb+ and Cs+ from aqueous solution, Chem. Eng. Res. Des. 125 (2017) 214–225. [16] X.S. Ye, Z.J. Wu, W. Li, H.N. Liu, Q. Li, B.J. Qing, M. Guo, F. Ge, Rubidium and cesium ion adsorption by an ammonium molybdophosphate-calcium alginate composite adsorbent, Colloids Surf. A Physicochem. Eng. Aspects 342 (1–3) (2009) 76–83. [17] L.X. Chen, X.Y. Wang, W.H. Lu, X.Q. Wu, J.H. Li, Molecular imprinting: Perspectives and applications, Chem. Soc. Rev. 45 (8) (2016) 2137–2211. [18] X.C. Yin, J. Long, Y. Xi, X.B. Luo, Recovery of silver from wastewater using a new magnetic photocatalytic ion-imprinted polymer, ACS Sustainable Chem. Eng. 5 (3) (2017) 2090–2097. [19] J.J. Wang, Z.K. Li, Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: Behaviors and mechanisms, J. Hazard. Mater. 300 (2015) 18–28. [20] K. Mosbach, Molecular imprinting, Trends Biochem. Sci. 19 (1) (1994) 9–14. [21] Z.Y. Zhou, D.L. Kong, H.Y. Zhu, N. Wang, Z. Wang, Q. Wang, W. Liu, Q.S. Li, W.D. Zhang, Z.Q. Ren, Preparation and adsorption characteristics of an ion-imprinted polymer for fast removal of Ni(II) ions from aqueous solution, J. Hazard. Mater. 341 (2018) 355–364. [22] L.W. Li, F. Zhu, Y.H. Lu, J. Guan, Synthesis, adsorption and selectivity of inverse emulsion Cd(II) imprinted polymers, Chin. J. Chem. Eng.26 (3) (2018) 494–500. [23] R.F. Huang, X.G. Ma, X. Li, L.H. Guo, X.W. Xie, M.Y. Zhang, J. Li, A novel ion-imprinted polymer based on graphene oxide-mesoporous silica nanosheet for fast and efficient removal of chromium(VI) from aqueous solution, J. Colloid Interface Sci. 514 (2018) 544–553. [24] X.W. Liu, Q. Wang, Z. Wang, X.T. Liu, M.H. Zhang, J.H. Fan, Z.Y. Zhou, Z.Q. Ren, Extraction of Rb(I) ions from aqueous solution using novel imprinting materials, Ind. Eng. Chem. Res. 58 (13) (2019) 5269–5279. [25] Z. Dahaghin, P.A. Kilmartin, H.Z. Mousavi, Determination of cadmium(II) using a glassy carbon electrode modified with a Cd-ion imprinted polymer, J. Electroanal. Chem. 810 (2018) 185–190. [26] T. Alizadeh, K. Atayi, Synthesis of hydrogen phosphate anion-imprinted polymer via emulsion polymerization and its use as the recognition element of graphene/graphite paste potentiometric electrode, Mater. Chem. Phys. 209 (2018) 180–187. [27] Z.Q. Ren, X.Y. Zhu, J. Du, D.L. Kong, N. Wang, Z. Wang, Q. Wang, W. Liu, Q.S. Li, Z.Y. Zhou, Facile and green preparation of novel adsorption materials by combining sol–gel with ion imprinting technology for selective removal of Cu(II) ions from aqueous solution, Appl. Surf. Sci. 435 (2018) 574–584. [28] X.Q. Cai, J.H. Li, Z. Zhang, F.F. Yang, R.C. Dong, L.X. Chen, Novel Pb2+ion imprinted polymers based on ionic interaction via synergy of dual functional monomers for selective solid-phase extraction of Pb2+ in water samples, ACS Appl. Mater. Interfaces 6 (1) (2014) 305–313. [29] P. Fang, W.Z. Xia, Y.Q. Zhou, Z.Y. Ai, W.Y. Yin, M.G. Xia, J.X. Yu, R. Chi, Q.Y. Yue, Ion-imprinted mesoporous silica/magnetic graphene oxide composites functionalized with Schiff-base for selective Cu(II) capture and simultaneously being transformed as a robust heterogeneous catalyst, Chem. Eng. J. 385 (2020) 123847. [30] Y. Huang, R. Wang, Review on fundamentals, preparations and applications of imprinted polymers, Curr. Org. Chem. 22 (16) (2018) 1600–1618. [31] M. Yoshikawa, K. Tharpa, Ş.O. Dima, Molecularly imprinted membranes: Past, present, and future, Chem. Rev. 116 (19) (2016) 11500–11528. [32] J.K. Kang, S.C. Lee, S.B. Kim, Enhancement of selective Cu(II) sorption through preparation of surface-imprinted mesoporous silica SBA-15 under high molar concentration ratios of chloride and copper ions, Microporous Mesoporous Mater. 272 (2018) 193–201. [33] Z.L. Fan, S. Li, R.R. Li, J.G. Shen, Adsorption of Cu(II) on surface ion-imprinted poly(allylamine)-silica material from aqueous solution, Polym. Plast. Technol. Eng. 53 (1) (2014) 30–37. [34] N. Jiang, X.J. Chang, H. Zheng, Q. He, Z. Hu, Selective solid-phase extraction of nickel(II) using a surface-imprinted silica gel sorbent, Anal. Chim. Acta 577 (2) (2006) 225–231. [35] I.V. Kolesnichenko, E.V. Anslyn, Practical applications of supramolecular chemistry, Chem. Soc. Rev. 46 (9) (2017) 2385–2390. [36] J.S. Bradshaw, R.M. Izatt, Crown ethers: The search for selective ion ligating agents, Acc. Chem. Res. 30 (8) (1997) 338–345. [37] X.B. Luo, L.L. Liu, F. Deng, S.L. Luo, Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb(II) ions in real environmental water samples, J. Mater. Chem. A 1 (28) (2013) 8280. [38] H.R. Rajabi, M. Shamsipur, S.M. Pourmortazavi, Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K+ ion in different water samples, Mater. Sci. Eng. C Mater. Biol. Appl. 33 (6) (2013) 3374–3381. [39] Z.Y. Zhou, X.T. Liu, M.H. Zhang, J. Jiao, H.W. Zhang, J. Du, B. Zhang, Z.Q. Ren, Preparation of highly efficient ion-imprinted polymers with Fe3O4 nanoparticles as carrier for removal of Cr(VI) from aqueous solution, Sci. Total Environ. 699 (2020) 134334. [40] D.L. Kong, N. Qiao, N. Wang, Z. Wang, Q. Wang, Z.Y. Zhou, Z.Q. Ren, Facile preparation of a nano-imprinted polymer on magnetite nanoparticles for the rapid separation of lead ions from aqueous solution, Phys. Chem. Chem. Phys. 20 (18) (2018) 12870–12878. [41] J.C. Xu, Z.L. Pu, X.C. Xu, Y.Y. Wang, D.Y. Yang, T. Zhang, F.X. Qiu, Simultaneous adsorption of Li(I) and Rb(I) by dual crown ethers modified magnetic ion imprinting polymers, Appl. Organomet. Chem. 33 (3) (2019) e4778. [42] H.Z. Lu, S.F. Xu, Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles, Biosens. Bioelectron. 92 (2017) 147–153. [43] X.C. Xu, Y. Li, D.Y. Yang, X.D. Zheng, Y.Y. Wang, J.M. Pan, T. Zhang, J.C. Xu, F.X. Qiu, Y.S. Yan, C.X. Li, A facile strategy toward ion-imprinted hierarchical mesoporous material via dual-template method for simultaneous selective extraction of lithium and rubidium, J. Clean.Prod. 171 (2018) 264–274. [44] D.L. Guerra, A.C. Batista, R.R. Viana, C. Airoldi, Adsorption of rubidium on raw and MTZ- and MBI-imogolite hybrid surfaces: An evidence of the chelate effect, Desalination 275 (1–3) (2011) 107–117. [45] P. Krys, F. Testa, A. Trochimczuk, C. Pin, J.M. Taulemesse, T. Vincent, E. Guibal, Encapsulation of ammonium molybdophosphate and zirconium phosphate in alginate matrix for the sorption of rubidium(I), J. Colloid Interface Sci.409 (2013) 141–150. [46] N. Tian, Research on the enhanced adsorption of rubidium ions by water-resistant metal-organic framework materials, MPhil thesis, Zhejiang Normal University, China, 2020. (in Chinese) [47] N. Qiao, Preparation and adsorption properties of rubidium and chromium ion imprinting materials, Master’s Thesis, Beijing University of Chemical Technology, China, 2018. (in Chinese) [48] T. Nur, P. Loganathan, M.A.H. Johir, J. Kandasamy, S. Vigneswaran, Removing rubidium using potassium cobalt hexacyanoferrate in the membrane adsorption hybrid system, Sep. Purif. Technol. 191 (2018) 286–294. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[4] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[5] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[6] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[7] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[8] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[9] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[10] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[11] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[12] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[13] | Kai Xue, Yanchun Xue, Jing Wang, Shuya Zhang, Xingmei Guo, Xiangjun Zheng, Fu Cao, Qinghong Kong, Junhao Zhang, Zhong Jin. KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 214-223. |
[14] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[15] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||