Chinese Journal of Chemical Engineering ›› 2023, Vol. 54 ›› Issue (2): 144-152.DOI: 10.1016/j.cjche.2022.04.007
Previous Articles Next Articles
Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong
Received:
2022-01-10
Revised:
2022-03-11
Online:
2023-05-11
Published:
2023-02-28
Contact:
Xiaoyan Dong,E-mail:d_xy@tju.edu.cn
Supported by:
Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong
通讯作者:
Xiaoyan Dong,E-mail:d_xy@tju.edu.cn
基金资助:
Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation[J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 144-152.
Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation[J]. 中国化学工程学报, 2023, 54(2): 144-152.
[1] I. Ahmad, A.B. Mozhi, L. Yang, Q.S. Han, X.J. Liang, C. Li, R. Yang, C. Wang, Graphene oxide-iron oxide nanocomposite as an inhibitor of Aβ 42 amyloid peptide aggregation, Colloids Surf. B Biointerfaces 159 (2017) 540–545. [2] H. Amiri, K. Saeidi, P. Borhani, A. Manafirad, M. Ghavami, V. Zerbi, Alzheimer's disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents, ACS Chem. Neurosci. 4 (11) (2013) 1417–1429. [3] W.P. Zhao, L.Y. Jiang, W.J. Wang, J.C. Sang, Q.C. Sun, Q.C. Dong, L. Li, F.P. Lu, F.F. Liu, Design of carboxylated single-walled carbon nanotubes as highly efficient inhibitors against Aβ40 fibrillation based on the HyBER mechanism, J. Mater. Chem. B 9 (34) (2021) 6902–6914. [4] Y.D. Huang, L. Mucke, Alzheimer mechanisms and therapeutic strategies, Cell 148 (6) (2012) 1204–1222. [5] X.L. Huo, Y.Q. Zhang, X.C. Jin, Y.A. Li, L. Zhang, A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer's disease, J. Photochem. Photobiol. B Biol. 190 (2019) 98–102. [6] J. Kowalczyk, E. Grapsi, A. Espargaró, A.B. Caballero, J. Juárez-Jiménez, M.A. Busquets, P. Gamez, R. Sabate, J. Estelrich, Dual effect of Prussian blue nanoparticles on Aβ40 aggregation: β-sheet fibril reduction and copper dyshomeostasis regulation, Biomacromolecules 22 (2) (2021) 430–440. [7] W. Liu , X.T. Sun , X.Y. Dong , Y. Sun, Chiral LVFFARK enantioselectively inhibits amyloid-β protein fibrillogenesis, Chin. J. Chem. Eng. 48 (2022) 227–235. [8] L.C. Yang, J. Sun, W.J. Xie, Y.N. Liu, J. Liu, Dual-functional selenium nanoparticles bind to and inhibit amyloid β fiber formation in Alzheimer's disease, J. Mater. Chem. B 5 (30) (2017) 5954–5967. [9] Y.X. Zhang, Y.J. Tang, D. Zhang, Y.L. Liu, J. He, Y. Chang, J. Zheng, Amyloid cross-seeding between Aβ and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes, Chin. J. Chem. Eng. 30 (2021) 225–235. [10] F. Huang, A.T. Qu, H.R. Yang, L. Zhu, H. Zhou, J.F. Liu, J.F. Long, L.Q. Shi, Self-assembly molecular chaperone to concurrently inhibit the production and aggregation of amyloid β peptide associated with Alzheimer's disease, ACS Macro Lett. 7 (8) (2018) 983–989. [11] E. Stefaniak, E. Atrian-Blasco, W. Goch, L. Sabater, C. Hureau, W. Bal, The aggregation pattern of aβ 1–40 is altered by the presence of N-truncated aβ4–40 and/or Cu II in a similar way through ionic interactions, Chem. Eur. J. 27 (8) (2021) 2798–2809. [12] D.Q. Yu, Y.J. Guan, F.Q. Bai, Z. Du, N. Gao, J.S. Ren, X.G. Qu, Metal-organic frameworks harness Cu chelating and photooxidation against amyloid β aggregation in vivo, Chem. A Eur. J. 25 (14) (2019) 3489–3495. [13] C.J. Matheou, N.D. Younan, J.H. Viles, Cu2+ accentuates distinct misfolding of Aβ(1–40) and Aβ(1–42) peptides, and potentiates membrane disruption, Biochem. J. 466 (2) (2015) 233–242. [14] K. Rajasekhar, C. Madhu, T. Govindaraju, Natural tripeptide-based inhibitor of multifaceted amyloid β toxicity, ACS Chem. Neurosci. 7 (9) (2016) 1300–1310. [15] Y.Q. Zhao, Q.M. Xu, W. Xu, D.D. Wang, J. Tan, C.Q. Zhu, X.S. Tan, Probing the molecular mechanism of cerium oxide nanoparticles in protecting against the neuronal cytotoxicity of Aβ1-42 with copper ions, Metallomics 8 (7) (2016) 644–647. [16] Z.K. Mathys, A.R. White, Copper and Alzheimer's disease, Adv. Neurobiol. 18 (2017) 199–216. [17] M.Y. Dong, H.Y. Li, D.K. Hu, W. Zhao, X.Y. Zhu, H.Q. Ai, Molecular dynamics study on the inhibition mechanisms of drugs CQ1-3 for alzheimer amyloid-β40 aggregation induced by Cu(2.), ACS Chem. Neurosci. 7 (5) (2016) 599–614. [18] F. Tahmasebinia, S. Emadi, Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron, Biometals 30 (2) (2017) 285–293. [19] L.Y. Zhu, Y.C. Han, C.Q. He, X. Huang, Y.L. Wang, Disaggregation ability of different chelating molecules on copper ion-triggered amyloid fibers, J. Phys. Chem. B 118 (31) (2014) 9298–9305. [20] R.K. Chang, X. Chen, H.J. Yu, G.Z. Tan, H.L. Wen, J.X. Huang, Z.F. Hao, Modified EDTA selectively recognized Cu2+ and its application in the disaggregation of β-amyloid-Cu (II)/Zn (II) aggregates, J. Inorg. Biochem. 203 (2020) 110929. [21] D.M. Johnstone, C. Moro, J. Stone, A.L. Benabid, J. Mitrofanis, Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer's and Parkinson's disease, Front. Neurosci. 9 (2016) 500. [22] W.Z. Pan, C.B. Dai, Y. Li, Y.M. Yin, L. Gong, J.O. Machuki, Y. Yang, S. Qiu, K.J. Guo, F.L. Gao, PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis, Biomaterials 239 (2020) 119851. [23] Y.W. Xi, J. Ge, M. Wang, M. Chen, W. Niu, W. Cheng, Y.M. Xue, C. Lin, B. Lei, Bioactive anti-inflammatory, antibacterial, antioxidative silicon-based nanofibrous dressing enables cutaneous tumor photothermo-chemo therapy and infection-induced wound healing, ACS Nano 14 (3) (2020) 2904–2916. [24] Y.T. Zhao, L.P. Tong, Z.B. Li, N. Yang, H.D. Fu, L. Wu, H.D. Cui, W.H. Zhou, J.H. Wang, H.Y. Wang, P.K. Chu, X.F. Yu, Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy, Chem. Mater. 29 (17) (2017) 7131–7139. [25] T.T. Yin, W.J. Xie, J. Sun, L.C. Yang, J. Liu, Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and NIR photothermal treatment of Alzheimer's disease using ultralow irradiance, ACS Appl. Mater. Interfaces 8 (30) (2016) 19291–19302. [26] S. Sudhakar, P.B. Santhosh, E. Mani, Dual role of gold nanorods: inhibition and dissolution of aβ fibrils induced by near IR laser, ACS Chem. Neurosci. 8 (10) (2017) 2325–2334. [27] M. Li, X.J. Yang, J.S. Ren, K.G. Qu, X.G. Qu, Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease, Adv. Mater. 24 (13) (2012) 1722–1728. [28] M. Li, A.D. Zhao, K. Dong, W. Li, J.S. Ren, X.G. Qu, Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid β-peptide aggregation and can be used for photothermal treatment of Alzheimer's disease, Nano Res. 8 (10) (2015) 3216–3227. [29] M. Battaglini, A. Marino, A. Carmignani, C. Tapeinos, V. Cauda, A. Ancona, N. Garino, V. Vighetto, G. la Rosa, E. Sinibaldi, G. Ciofani, Polydopamine nanoparticles as an organic and biodegradable multitasking tool for neuroprotection and remote neuronal stimulation, ACS Appl. Mater. Interfaces 12 (32) (2020) 35782–35798. [30] S.H. Bhang, S.H. Kwon, S. Lee, G.C. Kim, A.M. Han, Y.H. Kwon, B.S. Kim, Enhanced neuronal differentiation of pheochromocytoma 12 cells on polydopamine-modified surface, Biochem. Biophys. Res. Commun. 430 (4) (2013) 1294–1300. [31] Y. Fu, L. Yang, J.H. Zhang, J.F. Hu, G.G. Duan, X.H. Liu, Y.W. Li, Z.P. Gu, Polydopamine antibacterial materials, Mater. Horiz. 8 (6) (2021) 1618–1633. [32] X.J. Chen, L.X. Song, X.L. Li, L.Y. Zhang, L. Li, X.P. Zhang, C.G. Wang, Co-delivery of hydrophilic/hydrophobic drugs by multifunctional yolk-shell nanoparticles for hepatocellular carcinoma theranostics, Chem. Eng. J. 389 (2020) 124416. [33] J.S. Liu, S.J. Peng, G.F. Li, Y.X. Zhao, X.Y. Meng, X.R. Yu, Z.H. Li, J.M. Chen, Polydopamine nanoparticles for deep brain ablation via near-infrared irradiation, ACS Biomater. Sci. Eng. 6 (1) (2020) 664–672. [34] P. Xue, L.H. Sun, Q. Li, L. Zhang, J.H. Guo, Z.G. Xu, Y.J. Kang, PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells, Colloids Surf. B Biointerfaces 160 (2017) 11–21. [35] C.C. Ho, S.J. Ding, Structure, properties and applications of mussel-inspired polydopamine, J. Biomed. Nanotechnol. 10 (10) (2014) 3063–3084. [36] D. Hauser, D. Septiadi, J. Turner, A. Petri-Fink, B. Rothen-Rutishauser, From bioinspired glue to medicine: polydopamine as a biomedical material, Materials (Basel) 13 (7) (2020) E1730. [37] L. Liu, Y. Chang, J. Yu, M.S. Jiang, N. Xia, Two-in-one polydopamine nanospheres for fluorescent determination of beta-amyloid oligomers and inhibition of beta-amyloid aggregation, Sens. Actuat. B Chem. 251 (2017) 359–365. [38] X.J. Yu, X. Tang, J.K. He, X. Yi, G.Y. Xu, L.L. Tian, R. Zhou, C. Zhang, K. Yang, Polydopamine nanoparticle as a multifunctional nanocarrier for combined radiophotodynamic therapy of cancer, Part. Part. Syst. Charact. 34 (2) (2017) 1600296. [39] B.J. Geng, D.W. Yang, D.Y. Pan, L. Wang, F.F. Zheng, W.W. Shen, C. Zhang, X.K. Li, NIR-responsive carbon dots for efficient photothermal cancer therapy at low power densities, Carbon 134 (2018) 153–162. [40] H. Zhang, X.Y. Dong, Y. Sun, Carnosine-LVFFARK-NH2 conjugate: a moderate chelator but potent inhibitor of Cu2+-mediated amyloid β-protein aggregation, ACS Chem. Neurosci. 9 (11) (2018) 2689–2700. [41] J.N. Yang, W. Liu, Y. Sun, X.Y. Dong, LVFFARK-PEG-stabilized black phosphorus nanosheets potently inhibit amyloid-β fibrillogenesis, Langmuir 36 (7) (2020) 1804–1812. [42] X. Li, W.J. Wang, X.Y. Dong, Y. Sun, Conjugation of RTHLVFFARK to human lysozyme creates a potent multifunctional modulator for Cu2+-mediated amyloid β-protein aggregation and cytotoxicity, J. Mater. Chem. B 8 (11) (2020) 2256–2268. [43] Q. Liu, Z.H. Pu, A.M. Asiri, A.O. Al-Youbi, X.P. Sun, Polydopamine nanospheres: a biopolymer-based fluorescent sensing platform for DNA detection, Sens. Actuat. B Chem. 191 (2014) 567–571. [44] Y.J. Chung, B.I. Lee, C.B. Park, Multifunctional carbon dots as a therapeutic nanoagent for modulating Cu(ii)-mediated β-amyloid aggregation, Nanoscale 11 (13) (2019) 6297–6306. [45] H. Zhang, C. Zhang, X.Y. Dong, J. Zheng, Y. Sun, Design of nonapeptide LVFFARKHH: a bifunctional agent against Cu2+-mediated amyloid β-protein aggregation and cytotoxicity, J. Mol. Recognit. 31 (6) (2018) e2697. [46] W.Q. Gao, W.J. Wang, X.Y. Dong, Y. Sun, Nitrogen-doped carbonized polymer dots: a potent scavenger and detector targeting Alzheimer's β-amyloid plaques, Small 16 (43) (2020) e2002804. [47] L.G. Jia, W.P. Zhao, J.C. Sang, W.J. Wang, W. Wei, Y. Wang, F. Zhao, F.P. Lu, F.F. Liu, Inhibitory effect of a flavonoid dihydromyricetin against Aβ40 amyloidogenesis and its associated cytotoxicity, ACS Chem. Neurosci. 10 (11) (2019) 4696–4703. [48] Du Z, Gao N, Wang X, Ren J, Qu X, Near-infrared switchable fullerene-based synergy therapy for Alzheimer's disease, Small (2018) e1801852. |
[1] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[2] | Chaoqun Wu, Xun Liu, Fujun Yao, Xin Yang, Yan Wang, Wenyuan Hu. Crystalline-magnetism action in biomimetic mineralization of calcium carbonate [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 146-152. |
[3] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[4] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
[5] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
[6] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[7] | Suhang Xun, Cancan Wu, Lida Tang, Mengmeng Yuan, Haofeng Chen, Minqiang He, Wenshuai Zhu, Huaming Li. One-pot in-situ synthesis of coralloid supported VO2 catalyst for intensified aerobic oxidative desulfurization [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 136-140. |
[8] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[9] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 173-180. |
[10] | Yu Kiat Lin, Yan-Na Sun, Yu Fan, Hui Yi Leong, Dong-Qiang Lin, Shan-Jing Yao. UV/Vis-based process analytical technology to improve monoclonal antibody and host cell protein separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 230-235. |
[11] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 232-239. |
[12] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 56-62. |
[13] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 170-180. |
[14] | Yang Liu, Qiu Han, Guiliang Li, Haibo Lin, Fu Liu, Gang Deng, Dingfeng Lv, Weijie Sun. Purifying chylous plasma by precluding triglyceride via carboxylated polyethersulfone microfiltration membrane [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 130-139. |
[15] | Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 106-115. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 112
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||