Chinese Journal of Chemical Engineering ›› 2023, Vol. 54 ›› Issue (2): 162-172.DOI: 10.1016/j.cjche.2022.04.008
Previous Articles Next Articles
Jingjing Pan1, Haoran Sun1, Keyi Chen1, Yuhao Zhang1, Pengnian Shan1, Weilong Shi2,3, Feng Guo1
Received:
2021-12-15
Revised:
2022-03-06
Online:
2023-05-11
Published:
2023-02-28
Contact:
Weilong Shi,E-mail:shiwl@just.edu.cn;Feng Guo,E-mail:gfeng0105@126.com
Supported by:
Jingjing Pan1, Haoran Sun1, Keyi Chen1, Yuhao Zhang1, Pengnian Shan1, Weilong Shi2,3, Feng Guo1
通讯作者:
Weilong Shi,E-mail:shiwl@just.edu.cn;Feng Guo,E-mail:gfeng0105@126.com
基金资助:
Jingjing Pan, Haoran Sun, Keyi Chen, Yuhao Zhang, Pengnian Shan, Weilong Shi, Feng Guo. Nanodiamonds decorated yolk-shell ZnFe2O4 sphere as magnetically separable and recyclable composite for boosting antibiotic degradation performance[J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 162-172.
Jingjing Pan, Haoran Sun, Keyi Chen, Yuhao Zhang, Pengnian Shan, Weilong Shi, Feng Guo. Nanodiamonds decorated yolk-shell ZnFe2O4 sphere as magnetically separable and recyclable composite for boosting antibiotic degradation performance[J]. 中国化学工程学报, 2023, 54(2): 162-172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.04.008
[1] S.M. Zainab, M. Junaid, N. Xu, R.N. Malik, Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks, Water Res. 187 (2020) 116455. [2] B.L. Phoon, C.C. Ong, M.S. Mohamed Saheed, P.L. Show, J.S. Chang, T.C. Ling, S.S. Lam, J.C. Juan, Conventional and emerging technologies for removal of antibiotics from wastewater, J. Hazard. Mater. 400 (2020) 122961 [3] C.C. Wang, M.J. Cai, Y.P. Liu, F. Yang, H.Q. Zhang, J.S. Liu, S.J. Li, Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight, J. Colloid Interface Sci. 605 (2022) 727–740. [4] S.J. Li, C.C. Wang, Y.P. Liu, B. Xue, W. Jiang, Y. Liu, L.Y. Mo, X.B. Chen, Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism, Chem. Eng. J. 415 (2021) 128991. [5] S.J. Li, C.C. Wang, M.J. Cai, F. Yang, Y.P. Liu, J.L. Chen, P. Zhang, X. Li, X.B. Chen, Facile fabrication of TaON/Bi2MoO6 core-shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction, Chem. Eng. J. 428 (2022) 131158. [6] S.J. Li, C.C. Wang, Y.P. Liu, M.J. Cai, Y.N. Wang, H.Q. Zhang, Y. Guo, W. Zhao, Z.H. Wang, X.B. Chen, Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment, Chem. Eng. J. 429 (2022) 132519. [7] S.J. Li, J.L. Chen, S.W. Hu, H.L. Wang, W. Jiang, X.B. Chen, Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants, Chem. Eng. J. 402 (2020) 126165. [8] S.J. Li, C.C. Wang, Y.P. Liu, B. Xue, J.L. Chen, H.W. Wang, Y. Liu, Facile preparation of a novel Bi2WO6/calcined mussel shell composite photocatalyst with enhanced photocatalytic performance, Catalysts 10 (10) (2020) 1166. [9] S.J. Li, S.W. Hu, W. Jiang, J.L. Zhang, K.B. Xu, Z.H. Wang, In situ construction of WO3 nanoparticles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants, J. Colloid Interface Sci. 556 (2019) 335–344. [10] R. Gothwal, T. Shashidhar, Antibiotic pollution in the environment: a review, CLEAN Soil Air Water 43 (4) (2015) 479–489. [11] A. Bembibre, M. Benamara, M. Hjiri, E. Gómez, H.R. Alamri, R. Dhahri, A. Serrà, Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles, Chem. Eng. J. 427 (2022) 132006. [12] X. Gao, J. Niu, Y.F. Wang, Y. Ji, Y.L. Zhang, Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites, J. Hazard. Mater. 403 (2021) 123860. [13] H. Fang, K.L. Huang, J.N. Yu, C.C. Ding, Z.F. Wang, C. Zhao, H.Z. Yuan, Z. Wang, S. Wang, J.L. Hu, Y.B. Cui, Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment, Chemosphere 224 (2019) 202–211 [14] S. Li, J.Y. Hu, Photolytic and photocatalytic degradation of tetracycline: effect of humic acid on degradation kinetics and mechanisms, J. Hazard. Mater. 318 (2016) 134–144 [15] L. Tan, L.Y. Li, N. Ashbolt, X.L. Wang, Y.X. Cui, X. Zhu, Y. Xu, Y. Yang, D.Q. Mao, Y. Luo, Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin, Sci. Total Environ. 621 (2018) 1176–1184 [16] I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review, Water Res. 47 (3) (2013) 957–995 [17] L. Rizzo, A. Fiorentino, A. Anselmo, Advanced treatment of urban wastewater by UV radiation: effect on antibiotics and antibiotic-resistant E. coli strains, Chemosphere 92 (2) (2013) 171–176 [18] Q. Guo, C.Y. Zhou, Z.B. Ma, X.M. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges, Adv. Mater. 31 (50) (2019) 1901997. [19] Y.X. Shi, L.L. Li, Z. Xu, H.R. Sun, S. Amin, F. Guo, W.L. Shi, Y. Li, Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation, Mater. Res. Bull. 150 (2022) 111789. [20] H.R. Sun, L.J. Wang, F. Guo, Y.X. Shi, L.L. Li, Z. Xu, X. Yan, W.L. Shi, Fe-doped g-C3N4 derived from biowaste material with Fe-N bonds for enhanced synergistic effect between photocatalysis and Fenton degradation activity in a broad pH range, J. Alloys Compd. 900 (2022) 163410. [21] J.J. Pan, L.J. Wang, Y.X. Shi, L.L. Li, Z. Xu, H.R. Sun, F. Guo, W.L. Shi, Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics, Sep. Purif. Technol. 284 (2022) 120270. [22] W.L. Shi, C.C. Hao, Y.M. Fu, F. Guo, Y.B. Tang, X. Yan, Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots, Chem. Eng. J. 433 (2022) 133741. [23] Z. Xu, Y.X. Shi, L.L. Li, H.R. Sun, M.S. Amin, F. Guo, H.B. Wen, W.L. Shi, Fabrication of 2D/2D Z-scheme highly crystalline carbon nitride/δ-Bi2O3 heterojunction photocatalyst with enhanced photocatalytic degradation of tetracycline, J. Alloys Compd. 895 (2022) 162667.http://dx.doi.org/10.1016/j.jallcom.2021.162667 [24] R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review, Adv Colloid Interface Sci 272 (2019) 102009 [25] J.J. Dang, J.R. Guo, L.P. Wang, F. Guo, W.L. Shi, Y.L. Li, W.S. Guan, Construction of Z-scheme Fe3O4/BiOCl/BiOI heterojunction with superior recyclability for improved photocatalytic activity towards tetracycline degradation, J. Alloys Compd. 893 (2022) 162251. [26] W.L. Shi, Y.N. Liu, W. Sun, Y.Z. Hong, X.Y. Li, X. Lin, F. Guo, J.Y. Shi, Assembling g-C3N4 nanosheets on rod-like CoFe2O4 nanocrystals to boost photocatalytic degradation of ciprofloxacin with peroxymonosulfate activation, Mater. Today Commun. 29 (2021) 102871. [27] L.J. Li, J. Xu, J.P. Ma, Z.Y. Liu, Y.R. Li, A bimetallic sulfide CuCo2S4 with good synergistic effect was constructed to drive high performance photocatalytic hydrogen evolution, J. Colloid Interface Sci. 552 (2019) 17–26. [28] C.Y. Lu, L.N. Gao, S.J. Yin, F. Guo, C.X. Wang, D. Li, Fabrication of p-n MoS2/BiOBr heterojunction with few-layered structure for enhanced photocatalytic activity toward tetracycline degradation, DESALINATION WATER TREATMENT 207 (2020) 341–351. [29] J.F. Guo, C.S. Yang, Z.X. Sun, Z. Yang, L.P. Wang, C.Y. Lu, Z.Y. Ma, F. Guo, Ternary Fe3O4/MoS2/BiVO4 nanocomposites: novel magnetically separable visible light-driven photocatalyst for efficiently degradation of antibiotic wastewater through p–n heterojunction, J. Mater. Sci. Mater. Electron. 31 (19) (2020) 16746–16758. [30] Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion, Nat. Mater. 18 (9) (2019) 985–993 [31] F. Guo, Z.H. Chen, X.L. Huang, L.W. Cao, X.F. Cheng, W.L. Shi, L.Z. Chen, Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light, Sep. Purif. Technol. 275 (2021) 119223. [32] Y.X. Shi, L.L. Li, Z. Xu, H.R. Sun, F. Guo, W.L. Shi, One-step simple green method to prepare carbon-doped graphitic carbon nitride nanosheets for boosting visible-light photocatalytic degradation of tetracycline, J. Chem. Technol. Biotechnol. 96 (11) (2021) 3122–3133. [33] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, K.K. Shu, W.L. Shi, C.Y. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 228 (2019) 115770. [34] W.L. Shi, S. Yang, H.R. Sun, J.B. Wang, X. Lin, F. Guo, J.Y. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light, J. Mater. Sci. 56 (3) (2021) 2226–2240. [35] Y.B. Xiang, Y.H. Huang, B. Xiao, X.Y. Wu, G.K. Zhang, Magnetic yolk-shell structure of ZnFe2O4 nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study, Appl. Surf. Sci. 513 (2020) 145820. [36] Y.S. Fu, X. Wang, Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation, Ind. Eng. Chem. Res. 50 (12) (2011) 7210–7218. [37] J.N. Li, X.Y. Li, L.B. Zeng, S.Y. Fan, M.M. Zhang, W.B. Sun, X. Chen, M.O. Tadé, S.M. Liu, Functionalized nitrogen-doped carbon dot-modified yolk-shell ZnFe 2 O4 nanospheres with highly efficient light harvesting and superior catalytic activity, Nanoscale 11 (9) (2019) 3877–3887. [38] J.N. Li, X.Y. Li, X. Chen, Z.F. Yin, Y.X. Li, X.C. Jiang, In situ construction of yolk-shell zinc ferrite with carbon and nitrogen co-doping for highly efficient solar light harvesting and improved catalytic performance, J. Colloid Interface Sci. 554 (2019) 91–102. [39] L.R. Hou, R.Q. Bao, Y.R. Zhang, X. Sun, J.Y. Zhang, H. Dou, X.G. Zhang, C.Z. Yuan, Structure-designed synthesis of yolk–shell hollow ZnFe2O4/C@N-doped carbon sub-microspheres as a competitive anode for high-performance Li-ion batteries, J. Mater. Chem. A 6 (37) (2018) 17947–17958. [40] N. Zhang, X.Z. Fu, Y.J. Xu, A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst, J. Mater. Chem. 21 (22) (2011) 8152. [41] L.X. Su, Z.Y. Liu, Y.L. Ye, C.L. Shen, Q. Lou, C.X. Shan, Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation, Int. J. Hydrog. Energy 44 (36) (2019) 19805–19815. [42] J.J. Pan, F. Guo, H.R. Sun, M.Y. Li, X.F. Zhu, L.L. Gao, W.L. Shi, Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity, J. Mater. Sci. 56 (11) (2021) 6663–6675. [43] Z.Y. Lin, J. Xiao, L.H. Li, P. Liu, C.X. Wang, G.W. Yang, Nanodiamond-embedded p-type copper(I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution, Adv. Energy Mater. 6 (4) (2016) 1501865. [44] H.I. Kim, S. Weon, H. Kang, A.L. Hagstrom, O.S. Kwon, Y.S. Lee, W. Choi, J.H. Kim, Plasmon-enhanced sub-bandgap photocatalysis via triplet-triplet annihilation upconversion for volatile organic compound degradation, Environ. Sci. Technol. 50 (20) (2016) 11184–11192. [45] K.D. Kim, N.K. Dey, H.O. Seo, Y.D. Kim, D.C. Lim, M. Lee, Photocatalytic decomposition of toluene by nanodiamond-supported TiO2 prepared using atomic layer deposition, Appl. Catal. A Gen. 408 (1–2) (2011) 148–155. [46] F.M. Shakhov, A.M. Abyzov, K. Takai, Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature, J. Solid State Chem. 256 (2017) 72–92. [47] L.M. Pastrana-Martínez, S. Morales-Torres, S.A.C. Carabineiro, J.G. Buijnsters, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, Nanodiamond-TiO2 composites for heterogeneous photocatalysis, ChemPlusChem 78 (8) (2013) 750. [48] W.L. Shi, F. Guo, H.B. Wang, C.G. Liu, Y.J. Fu, S.L. Yuan, H. Huang, Y. Liu, Z.H. Kang, Carbon dots decorated magnetic ZnFe2O4 nanoparticles with enhanced adsorption capacity for the removal of dye from aqueous solution, Appl. Surf. Sci. 433 (2018) 790–797. [49] L.X. Su, Q. Lou, C.X. Shan, D.L. Chen, J.H. Zang, L.J. Liu, Ag/Nanodiamond/g-C3N4 heterostructures with enhanced visible-light photocatalytic performance, Appl. Surf. Sci. 525 (2020) 146576. [50] H. Liu, Y.J. Chen, H.L. Li, H.Y. Jiang, G.H. Tian, Achieving cadmium selenide-decorated zinc ferrite@titanium dioxide hollow core/shell nanospheres with improved light trapping and charge generation for photocatalytic hydrogen generation, J. Colloid Interface Sci. 575 (2020) 158–167. [51] L.J. Wang, R.Q. Guan, Y.F. Qi, F.L. Zhang, P. Li, J.M. Wang, P. Qu, G. Zhou, W.L. Shi, Constructing Zn-P charge transfer bridge over ZnFe 2 O4-black phosphorus 3D microcavity structure: efficient photocatalyst design in visible-near-infrared region, J. Colloid Interface Sci. 600 (2021) 463–472. [52] L. Li, Y.X. Zhang, J. Li, W. Huo, B. Li, J. Bai, Y. Cheng, H.J. Tang, X.H. Li, Facile synthesis of yolk–shell structured ZnFe2O4 microspheres for enhanced electrocatalytic oxygen evolution reaction, Inorg. Chem. Front. 6 (2) (2019) 511–520. [53] J.T. Feng, Y.C. Wang, Y.H. Hou, L.C. Li, Tunable design of yolk–shell ZnFe2O4@RGO@TiO2 microspheres for enhanced high-frequency microwave absorption, Inorg. Chem. Front. 4 (6) (2017) 935–945. [54] K.W. Wang, S. Zhan, D.Y. Zhang, H. Sun, X.D. Jin, J. Wang, In situ grown monolayer N-Doped graphene and ZnO on ZnFe2O4 hollow spheres for efficient photocatalytic tetracycline degradation, Colloids Surf. A Physicochem. Eng. Aspects 618 (2021) 126362. [55] P.L. Liang, L.Y. Yuan, H. Deng, X.C. Wang, L. Wang, Z.J. Li, S.Z. Luo, W.Q. Shi, Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light, Appl. Catal. B Environ. 267 (2020) 118688. [56] H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J. 406 (2021) 126844. [57] J.J. Pan, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, Nanodiamonds anchored on porous ZnSnO3 cubes as an efficient composite photocatalyst with improved visible-light photocatalytic degradation of tetracycline, Sep. Purif. Technol. 263 (2021) 118398. [58] A.Q. Mir, G. Joshi, P. Ghosh, S. Khandelwal, A. Kar, R. Hegde, S. Khatua, A. Dutta, Plasmonic gold nanoprism–cobalt molecular complex dyad mimics photosystem-II for visible–NIR illuminated neutral water oxidation, ACS Energy Letters. 4 (2019) 2428-2435. [59] A.Q. Mir, G. Joshi, P. Ghosh, S. Khandelwal, A. Kar, R. Hegde, S. Khatua, A. Dutta, Plasmonic gold nanoprism–cobalt molecular complex dyad mimics photosystem-II for visible–NIR illuminated neutral water oxidation, ACS Energy Lett. 4 (10) (2019) 2428–2435. [60] H. Zhao, P.P. Jiang, W. Cai, Graphitic C3N4 decorated with CoP co-catalyst: enhanced and stable photocatalytic H2 evolution activity from water under visible-light irradiation, Chem. Asian J. 12 (3) (2017) 361–365. [61] G.D. Fan, X. Lin, Y.F. You, B.H. Du, X. Li, J. Luo, Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa: Characterization, performance and mechanism, J. Hazard. Mater. 421 (2022) 126703. [62] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, L.Z. Chen, Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater, Chem. Eng. J. 395 (2020) 125118. [63] F. Guo, H.R. Sun, X.L. Huang, W.L. Shi, C. Yan, Fabrication of TiO 2/high-crystalline g-C 3 N 4 composite with enhanced visible-light photocatalytic performance for tetracycline degradation, J. Chem. Technol. Biotechnol. (2020) jctb.6384. [64] C. Wang, Y. Xue, P.F. Wang, Y.H. Ao, Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation, J. Alloys Compd. 748 (2018) 314–322. [65] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, F. Guo, C. Yan, Three-dimensional Z-Scheme Ag3PO4/Co3(PO4)2@Ag heterojunction for improved visible-light photocatalytic degradation activity of tetracycline, J. Alloys Compd. 818 (2020) 152883. [66] W.L. Shi, C. Liu, M.Y. Li, X. Lin, F. Guo, J.Y. Shi, Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity, J. Hazard. Mater. 389 (2020) 121907. [67] F. Guo, X.L. Huang, Z.H. Chen, H.J. Ren, M.Y. Li, L.Z. Chen, MoS2 nanosheets anchored on porous ZnSnO3 cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight, J. Hazard. Mater. 390 (2020) 122158. [68] W.L. Shi, K.K. Shu, H.R. Sun, H.J. Ren, M.Y. Li, F.Y. Chen, F. Guo, Dual enhancement of capturing photogenerated electrons by loading CoP nanoparticles on N-deficient graphitic carbon nitride for efficient photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 246 (2020) 116930. [69] X.F. Zhu, F. Guo, J.J. Pan, H.R. Sun, L.L. Gao, J.X. Deng, X.Y. Zhu, W.L. Shi, Fabrication of visible-light-response face-contact ZnSnO3@g-C3N4 core–shell heterojunction for highly efficient photocatalytic degradation of tetracycline contaminant and mechanism insight, J. Mater. Sci. 56 (6) (2021) 4366–4379. [70] F. Deng, L.N. Zhao, X.B. Luo, S.L. Luo, D.D. Dionysiou, Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater, Chem. Eng. J. 333 (2018) 423–433. [71] Y. Yang, Z.T. Zeng, C. Zhang, D.L. Huang, G.M. Zeng, R. Xiao, C. Lai, C.Y. Zhou, H. Guo, W.J. Xue, M. Cheng, W.J. Wang, J.J. Wang, Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight, Chem. Eng. J. 349 (2018) 808–821. [72] W.L. Shi, H.J. Ren, M.Y. Li, K.K. Shu, Y.S. Xu, C. Yan, Y.B. Tang, Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes, Chem. Eng. J. 382 (2020) 122876. [73] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, W.L. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes: mechanism and degradation pathway, Sep. Purif. Technol. 253 (2020) 117518. [74] J.F. Niu, S.Y. Ding, L.W. Zhang, J.B. Zhao, C.H. Feng, Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: kinetics, mechanisms and toxicity assessment, Chemosphere 93 (1) (2013) 1–8. [75] F. Guo, H.R. Sun, L. Cheng, W.L. Shi, Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight, New J. Chem. 44 (26) (2020) 11215–11223. |
[1] | Duanlian Tang, Xiaoyan Chen, Jiayan Yan, Zhuo Xiong, Xiaoyu Lou, Changshen Ye, Jie Chen, Ting Qiu. Facile one-pot synthesis of a BiOBr/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity for tetracycline degradation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 222-231. |
[2] | Weilong Shi, Jie Gao, Haoran Sun, Zhongyi Liu, Feng Guo, Lijing Wang. Highly efficient visible/near-infrared light photocatalytic degradation of antibiotic wastewater over 3D yolk-shell ZnFe2O4 supported 0D carbon dots with up-conversion property [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 213-223. |
[3] | Min Lu, Mengxuan Liu, Chunli Xu, Yu Yin, Lei Shi, Hong Wu, Aihua Yuan, Xiao-Ming Ren, Shaobin Wang, Hongqi Sun. Location and size regulation of manganese oxides within mesoporous silica for enhanced antibiotic degradation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 36-43. |
[4] | Feng Guo, Chunli Shi, Wei Sun, Yanan Liu, Xue Lin, Weilong Shi. Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 1-11. |
[5] | Hao Zhou, Qi Yin. Hydrothermal preparation of Nb-doped NaTaO3 with enhanced photocatalytic activity for removal of organic dye [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 142-149. |
[6] | Linlan Wu, Zhengxin Jiao, Suhang Xun, Minqiang He, Lei Fan, Chao Wang, Wenshu Yang, Wenshuai Zhu, Huaming Li. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 205-211. |
[7] | Xiaoqing Yan, Hua An, Zihao Chen, Guidong Yang. Significantly enhanced charge transfer efficiency and surface reaction on NiP2/g-C3N4 heterojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 31-39. |
[8] | Weilong Shi, Yanan Liu, Wei Sun, Yuanzhi Hong, Xiangyu Li, Xue Lin, Feng Guo, Junyou Shi. Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe2O4 [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 136-145. |
[9] | Fenghongkang Pan, Yimeng Wang, Kaiqing Zhao, Jun Hu, Honglai Liu, Ying Hu. Photocatalytic degradation of tetracycline hydrochloride with visible light-responsive bismuth tungstate/conjugated microporous polymer [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 488-496. |
[10] | Tao Yang, Fen Liu, Houfeng Xiong, Qiyong Yang, Fushan Chen, Changchao Zhan. Fouling process and anti-fouling mechanisms of dynamic membrane assisted by photocatalytic oxidation under sub-critical fluxes [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1798-1806. |
[11] | Yangyang Yu, Kejing Wu, Shiyu Lu, Kui Ma, Shan Zhong, Hegui Zhang, Yingming Zhu, Jing Guo, Hairong Yue, Changjun Liu, Siyang Tang, Bin Liang. Engineering an ultrathin amorphous TiO2 layer for boosting the weatherability of TiO2 pigment with high lightening power [J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2825-2834. |
[12] | Yongbing Xie, Yingying Chen, Jin Yang, Chenming Liu, He Zhao, Hongbin Cao. Distinct synergetic effects in the ozone enhanced photocatalytic degradation of phenol and oxalic acid with Fe3+/TiO2 catalyst [J]. Chin.J.Chem.Eng., 2018, 26(7): 1528-1535. |
[13] | Abdus Samad, Shamim Ahsan, Ikki Tateishi, Mai Furukawa, Hideyuki Katsumata, Tohru Suzuki, Satoshi Kaneco. Indirect photocatalytic reduction of arsenate to arsenite in aqueous solution with TiO2 in the presence of hole scavengers [J]. Chin.J.Chem.Eng., 2018, 26(3): 529-533. |
[14] | Feng Zhang, Zhilong Xu, Kun Wang, Rizhi Chen, Zhaoxiang Zhong, Weihong Xing. Controllable preparation of ZnO porous flower through a membrane dispersion reactor and their photocatalytic properties [J]. Chin.J.Chem.Eng., 2018, 26(10): 2192-2198. |
[15] | Zhongping Yao, Yajun Zhang, Yaqiong He, Qixing Xia, Zhaohua Jiang. Synthesis of hierarchical dendritic micro-nano structure ZnFe2O4 and photocatalytic activities for water splitting [J]. , 2016, 24(8): 1112-1116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||