Chinese Journal of Chemical Engineering ›› 2023, Vol. 55 ›› Issue (3): 212-221.DOI: 10.1016/j.cjche.2022.05.030
Previous Articles Next Articles
Mingdong Sun1, Dongxin Pan1, Tingting Ye1, Jing Gu2, Yu Zhou1, Jun Wang1
Received:
2022-01-08
Revised:
2022-05-28
Online:
2023-06-03
Published:
2023-03-28
Contact:
Yu Zhou,E-mail:njutzhouyu@njtech.edu.cn;Jun Wang,E-mail:junwang@njtech.edu.cn
Supported by:
Mingdong Sun1, Dongxin Pan1, Tingting Ye1, Jing Gu2, Yu Zhou1, Jun Wang1
通讯作者:
Yu Zhou,E-mail:njutzhouyu@njtech.edu.cn;Jun Wang,E-mail:junwang@njtech.edu.cn
基金资助:
Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2[J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221.
Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2[J]. 中国化学工程学报, 2023, 55(3): 212-221.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.05.030
[1] K. Zhao, X. Quan, Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: recent progress and remaining challenges, ACS Catal. 11 (4) (2021) 2076–2097. [2] Y. Zhou, J.L. Zhang, L. Wang, X.L. Cui, X.L. Liu, S.S. Wong, H. An, N. Yan, J.Y. Xie, C. Yu, P.X. Zhang, Y.H. Du, S.B. Xi, L.R. Zheng, X.Z. Cao, Y.J. Wu, Y.X. Wang, C.Q. Wang, H.M. Wen, L. Chen, H.B. Xing, J. Wang, Self-assembled iron-containing mordenite monolith for carbon dioxide sieving, Science 373 (6552) (2021) 315–320. [3] W.W. Shi, Q.Q. Zhang, S.J. Liu, S.S. Su, B.B. Chang, B.C. Yang, Copper ions-assisted inorganic dynamic porogen of graphene-like multiscale microporous carbon nanosheets for effective carbon dioxide capture, J. Colloid Interface Sci. 600 (2021) 670–680. [4] J.J. Li, W.Y. Zan, H.X. Kang, Z.P. Dong, X.M. Zhang, Y.X. Lin, Y.W. Mu, F.W. Zhang, X.M. Zhang, J. Gu, Graphitic-N highly doped graphene-like carbon: a superior metal-free catalyst for efficient reduction of CO2, Appl. Catal. B Environ. 298 (2021) 120510. [5] Y. Zhou, W.L. Zhang, L. Ma, Y. Zhou, J. Wang, Amino acid anion paired mesoporous poly(ionic liquids) as metal-/ halogen-free heterogeneous catalysts for carbon dioxide fixation, ACS Sustainable Chem. Eng. 7 (10) (2019) 9387–9398. [6] X.Y. Tan, C. Yu, Y.W. Ren, S. Cui, W.B. Li, J.S. Qiu, Recent advances in innovative strategies for the CO2 electroreduction reaction, Energy Environ. Sci. 14 (2) (2021) 765–780. [7] Y.J. Zhao, L.L. Zheng, D. Jiang, W. Xia, X.T. Xu, Y. Yamauchi, J.P. Ge, J. Tang, Nanoengineering metal-organic framework-based materials for use in electrochemical CO2 reduction reactions, Small 17 (16) (2021) e2006590. [8] A.S. Varela, W. Ju, P. Strasser, Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction, Adv. Energy Mater. 8 (30) (2018) 1802905. [9] Y.H. Wang, J.L. Liu, G.F. Zheng, Designing copper-based catalysts for efficient carbon dioxide electroreduction, Adv. Mater. 33 (46) (2021) 2005798. [10] H. Liu, Y.Q. Su, S.Y. Kuang, E.J.M. Hensen, S. Zhang, X.B. Ma, Highly efficient CO2 electrolysis within a wide operation window using octahedral tin oxide single crystals, J. Mater. Chem. A 9 (12) (2021) 7848–7856. [11] D. Esrafilzadeh, A. Zavabeti, R. Jalili, P. Atkin, J. Choi, B.J. Carey, R. Brkljača, A.P. O’Mullane, M.D. Dickey, D.L. Officer, D.R. MacFarlane, T. Daeneke, K. Kalantar-Zadeh, Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces, Nat. Commun. 10 (2019) 865. [12] L. Tao, Y.Q. Wang, Y.Q. Zou, N.N. Zhang, Y.Q. Zhang, Y.J. Wu, Y.Y. Wang, R. Chen, S.Y. Wang, Charge transfer modulated activity of carbon-based electrocatalysts, Adv. Energy Mater. 10 (11) (2020) 1901227. [13] M.D. Sun, Z.Y. Bian, W.W. Cui, X.L. Zhao, S. Dong, X.B. Ke, Y. Zhou, J. Wang, Pyrolyzing soft template-containing poly(ionic liquid) into hierarchical N-doped porous carbon for electroreduction of carbon dioxide, Chin. J. Chem. Eng. 43 (2022) 192–201. [14] Q.G. Zhu, X.F. Sun, D.X. Yang, J. Ma, X.C. Kang, L.R. Zheng, J. Zhang, Z.H. Wu, B.X. Han, Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex, Nat. Commun. 10 (1) (2019) 3851. [15] X.S. Hu, C.Y. Zhao, X. Hu, Q.X. Guan, Y.L. Wang, W. Li, Nitrogen-doped carbon cages encapsulating CuZn alloy for enhanced CO2 reduction, ACS Appl. Mater. Interfaces 11 (28) (2019) 25100–25107. [16] K.W. Mou, Z.P. Chen, X.X. Zhang, M.Y. Jiao, X.P. Zhang, X. Ge, W. Zhang, L.C. Liu, Highly efficient electroreduction of CO2 on nickel single-atom catalysts: atom trapping and nitrogen anchoring, Small 15 (49) (2019) e1903668. [17] L. Ye, Y.R. Ying, D.R. Sun, Z.Y. Zhang, L.F. Fei, Z.H. Wen, J.L. Qiao, H.T. Huang, Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO 2 reduction, Angew. Chem. Int. Ed. 59 (8) (2020) 3244–3251. [18] M. Kuang, A.X. Guan, Z.X. Gu, P. Han, L.P. Qian, G.F. Zheng, Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion, Nano Res. 12 (9) (2019) 2324–2329. [19] W.L. Li, T.J. Bandosz, Analyzing the effect of nitrogen/sulfur groups’ density ratio in porous carbons on the efficiency of CO2 electrochemical reduction, Appl. Surf. Sci. 569 (2021) 151066. [20] B.B. Pan, X.R. Zhu, Y.L. Wu, T.C. Liu, X.X. Bi, K. Feng, N. Han, J. Zhong, J. Lu, Y.F. Li, Y.G. Li, Toward highly selective electrochemical CO2 reduction using metal-free heteroatom-doped carbon, Adv. Sci. 7 (16) (2020) 2001002. [21] W. Ni, Y.F. Xue, X.G. Zang, C.X. Li, H.Z. Wang, Z.Y. Yang, Y.M. Yan, Fluorine doped cagelike carbon electrocatalyst: an insight into the structure-enhanced CO selectivity for CO2 reduction at high overpotential, ACS Nano 14 (2) (2020) 2014–2023. [22] H.P. Yang, Q. Lin, C. Zhang, X.Y. Yu, Z. Cheng, G.D. Li, Q. Hu, X.Z. Ren, Q.L. Zhang, J.H. Liu, C.X. He, Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities, Nat. Commun. 11 (1) (2020) 593. [23] W.L. Li, N. Fechler, T.J. Bandosz, Chemically heterogeneous nitrogen sites of various reactivity in porous carbons provide high stability of CO2 electroreduction catalysts, Appl. Catal. B Environ. 234 (2018) 1–9. [24] L. Miao, H. Duan, M.X. Liu, W.J. Lu, D.Z. Zhu, T. Chen, L.C. Li, L.H. Gan, Poly(ionic liquid)-derived, N, S-codoped ultramicroporous carbon nanoparticles for supercapacitors, Chem. Eng. J. 317 (2017) 651–659. [25] C. Li, Y.W. Wang, N. Xiao, H.Q. Li, Y.Q. Ji, Z. Guo, C. Liu, J.S. Qiu, Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction, Carbon 151 (2019) 46–52. [26] X.M. Hu, H.H. Hval, E.T. Bjerglund, K.J. Dalgaard, M.R. Madsen, M.M. Pohl, E. Welter, P. Lamagni, K.B. Buhl, M. Bremholm, M. Beller, S.U. Pedersen, T. Skrydstrup, K. Daasbjerg, Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts, ACS Catal. 8 (7) (2018) 6255–6264. [27] W.Q. Liu, J.W. Qi, P.Y. Bai, W.D. Zhang, L. Xu, Utilizing spatial confinement effect of N atoms in micropores of coal-based metal-free material for efficiently electrochemical reduction of carbon dioxide, Appl. Catal. B Environ. 272 (2020) 118974. [28] H. Wang, J. Jia, P.F. Song, Q. Wang, D.B. Li, S.X. Min, C.X. Qian, L. Wang, Y.F. Li, C. Ma, T. Wu, J.Y. Yuan, M. Antonietti, G.A. Ozin, Efficient electrocatalytic reduction of CO2by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2Refinery, Angew. Chem. Int. Ed. 56 (27) (2017) 7847–7852. [29] S. Mascotto, D. Kuzmicz, D. Wallacher, M. Siebenbürger, D. Clemens, S. Risse, J.Y. Yuan, M. Antonietti, M. Ballauff, Poly(ionic liquid)-derived nanoporous carbon analyzed by combination of gas physisorption and small-angle neutron scattering, Carbon 82 (2015) 425–435. [30] Y. Shao, Z.P. Jiang, Y.J. Zhang, T.Z. Wang, P. Zhao, Z. Zhang, J.Y. Yuan, H. Wang, All-poly(ionic liquid) membrane-derived porous carbon membranes: scalable synthesis and application for photothermal conversion in seawater desalination, ACS Nano 12 (11) (2018) 11704–11710. [31] C.J. Gao, G.J. Chen, X.C. Wang, J. Li, Y. Zhou, J. Wang, A hierarchical meso-macroporous poly(ionic liquid) monolith derived from a single soft template, Chem. Commun. (Camb) 51 (24) (2015) 4969–4972. [32] J. Gong, J.S. Zhang, H.J. Lin, J.Y. Yuan, “Cooking carbon in a solid salt”: synthesis of porous heteroatom-doped carbon foams for enhanced organic pollutant degradation under visible light, Appl. Mater. Today 12 (2018) 168–176. [33] J. Gong, H.J. Lin, M. Antonietti, J.Y. Yuan, Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s: hierarchical pore structures for efficient CO2capture and dye removal, J. Mater. Chem. A 4 (19) (2016) 7313–7321. [34] S.H. Zhang, Y.J. Gao, S. Cheng, Y.L. Yan, S.J. Zhang, G.L. Zhuang, S.W. Deng, Z.Z. Wei, X. Zhong, J.G. Wang, Fe(CN)5@PIL-derived N-doped porous carbon with FeCxNy active sites as a robust electrocatalyst for the oxygen reduction reaction, Catal. Sci. Technol. 9 (1) (2019) 97–105. [35] W.Y. Zhang, S. Wei, Y.N. Wu, Y.L. Wang, M. Zhang, D. Roy, H. Wang, J.Y. Yuan, Q. Zhao, Poly(ionic liquid)-derived graphitic nanoporous carbon membrane enables superior supercapacitive energy storage, ACS Nano 13 (9) (2019) 10261–10271. [36] J. Gao, C.C. He, J.G. Liu, P.J. Ren, H.B. Lu, J.Y. Feng, Z.G. Zou, Z. Yin, X.D. Wen, X.Y. Tan, Polymerizable ionic liquid as a precursor for N, P co-doped carbon toward the oxygen reduction reaction, Catal. Sci. Technol. 8 (4) (2018) 1142–1150. [37] Q. Wang, X.C. Ling, T.T. Ye, Y. Zhou, J. Wang, Ionic mesoporous polyamides enable highly dispersed ultrafine Ru nanoparticles: a synergistic stabilization effect and remarkable efficiency in levulinic acid conversion into γ-valerolactone, J. Mater. Chem. A 7 (32) (2019) 19140–19151. [38] D.X. Xue, Q. Wang, J.F. Bai, Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties, Coord. Chem. Rev. 378 (2019) 2–16. [39] S. Tang, L.J. Lin, X.S. Wang, X. Sun, A.Q. Yu, Adsorption of fulvic acid onto polyamide 6 microplastics: influencing factors, kinetics modeling, site energy distribution and interaction mechanisms, Chemosphere 272 (2021) 129638. [40] J. Yuan, W.Y. Zhi, L. Liu, M.P. Yang, H. Wang, J.X. Lu, Electrochemical reduction of CO2 at metal-free N-functionalized graphene oxide electrodes, Electrochimica Acta 282 (2018) 694–701. [41] G. Çakmak, T. Öztürk, Continuous synthesis of graphite with tunable interlayer distance, Diam. Relat. Mater. 96 (2019) 134–139. [42] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9–10) (2015) 1051–1069. [43] J.Q. Feng, S.J. Zeng, C.Y. Jiang, H.F. Dong, L.C. Liu, X.P. Zhang, Boosting CO2 electroreduction by iodine-treated porous nitrogen-doped carbon, Chem. Eng. Sci. X 8 (2020) 100084. [44] H. Ning, D.L. Guo, X.S. Wang, Z.H. Tan, W.H. Wang, Z.X. Yang, L.Q. Li, Q.S. Zhao, J. Hao, M.B. Wu, Efficient CO2 electroreduction over N-doped hieratically porous carbon derived from petroleum pitch, J. Energy Chem. 56 (2021) 113–120. [45] Y.W. Ma, S.J. Jiang, G.Q. Jian, H.S. Tao, L.S. Yu, X.B. Wang, X.Z. Wang, J.M. Zhu, Z. Hu, Y. Chen, CNx nanofibers converted from polypyrrole nanowires as platinum support for methanol oxidation, Energy Environ. Sci. 2 (2) (2009) 224–229. [46] P.F. Yao, Y.L. Qiu, T.T. Zhang, P.P. Su, X.F. Li, H.M. Zhang, N-doped nanoporous carbon from biomass as a highly efficient electrocatalyst for the CO2 reduction reaction, ACS Sustainable Chem. Eng. 7 (5) (2019) 5249–5255. [47] S.G. Wabo, O. Klepel, Nitrogen release and pore formation through KOH activation of nitrogen-doped carbon materials: an evaluation of the literature, Carbon Lett. 31 (4) (2021) 581–592. [48] Y. Zhu, K.L. Lv, X.P. Wang, H.Q. Yang, G.Z. Xiao, Y. Zhu, 1D/2D nitrogen-doped carbon nanorod arrays/ultrathin carbon nanosheets: outstanding catalysts for the highly efficient electroreduction of CO2 to CO, J. Mater. Chem. A 7 (24) (2019) 14895–14903. [49] J.Y. Xu, Y.H. Kan, R. Huang, B.S. Zhang, B.L. Wang, K.H. Wu, Y.M. Lin, X.Y. Sun, Q.F. Li, G. Centi, D.S. Su, Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide, ChemSusChem 9 (10) (2016) 1085–1089. [50] X.H. Han, Q.N. Wang, Y.L. Wu, C. Wu, Boosting formate production from CO2 electroreduction over gas diffusion electrode with accessible carbon mesopores, Electrochimica Acta 402 (2022) 139526. [51] C. Hu, S.L. Bai, L.J. Gao, S.C. Liang, J. Yang, S.D. Cheng, S.B. Mi, J.S. Qiu, Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts, ACS Catal. 9 (12) (2019) 11579–11588. [52] B.X. Zhang, J.L. Zhang, F.Y. Zhang, L.R. Zheng, G. Mo, B.X. Han, G.Y. Yang, Selenium-doped hierarchically porous carbon nanosheets as an efficient metal-free electrocatalyst for CO2 reduction, Adv. Funct. Mater. 30 (3) (2020) 1906194. [53] Y.F. Song, W. Chen, C.C. Zhao, S.G. Li, W. Wei, Y.H. Sun, Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol, Angewandte Chemie Int. Ed. 56 (36) (2017) 10840–10844. [54] Z.P. Chen, K.W. Mou, S.Y. Yao, L.C. Liu, Highly selective electrochemical reduction of CO2 to formate on metal-free nitrogen-doped PC61BM, J. Mater. Chem. A 6 (24) (2018) 11236–11243. [55] Y.F. Song, S.B. Wang, W. Chen, S.G. Li, G.H. Feng, W. Wei, Y.H. Sun, Enhanced ethanol production from CO 2 electroreduction at micropores in nitrogen-doped mesoporous carbon, ChemSusChem 13 (2) (2020) 293–297. [56] G.L. Chai, Z.X. Guo, Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2electrochemical reduction, Chem. Sci. 7 (2) (2016) 1268–1275. [57] X.M. Ning, Y.H. Li, J.Y. Ming, Q. Wang, H.J. Wang, Y.H. Cao, F. Peng, Y.H. Yang, H. Yu, Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction, Chem. Sci. 10 (6) (2019) 1589–1596. |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[3] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[4] | Junyu Chen, Yu Yang, Yuzheng Pan, Yang You, Liwen Hu, Meilong Hu. Wear resistance performance of high entropy alloy–ceramic coating composites synthesized via a novel combined process [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 202-213. |
[5] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[6] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 290-308. |
[7] | Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 97-103. |
[8] | Shuang Qiu, Yonghou Xiao, Haoran Wu, Shengnan Lu, Qidong Zhao, Gaohong He. One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH3 at low temperature [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 193-202. |
[9] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[10] | Xiaoping Li, Jiaxin Pan, Jinwen Shi, Yanlin Chai, Songwei Hu, Qiaorong Han, Yanming Zhang, Xianwen Li, Dengwei Jing. Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 290-298. |
[11] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[12] | Yaoyao Peng, Lei Song, Siru Lu, Ziyu Su, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 246-256. |
[13] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 36-43. |
[14] | Libing Yu, Qiuyan Huang, Jing Wu, Erhong Song, Beibei Xiao. Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 106-113. |
[15] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||