[1] M. Kim, S. Shukla, Y. Oh, S.H. Chung, M. Kim, Comparative diminution of patulin content in apple juice with food-grade additives sodium bicarbonate, vinegar, mixture of sodium bicarbonate and vinegar, citric acid, baking powder, and ultraviolet irradiation, Front. Pharmacol. 9 (2018) 822. [2] T. Mitaka, G.L. Sattler, H.C. Pitot, The bicarbonate ion is essential for efficient DNA synthesis by primary cultured rat hepatocytes, In Vitro Cell. Dev. Biol. 27A (7) (1991) 549–556. [3] Z.L. Kang, X.H. Zhang, K. Li, Y.P. Li, F. Lu, H.J. Ma, Z.J. Song, S.M. Zhao, M.M. Zhu, Effects of sodium bicarbonate on the gel properties, water distribution and mobility of low-salt pork batters, LWT 139 (2021) 110567. [4] Y. Liang, W. Wang, Y. Shen, Y. Liu, X.J. Liu, Effects of home preparation on organophosphorus pesticide residues in raw cucumber, Food Chem. 133 (3) (2012) 636–640. [5] L.E.R. Dawson, R.W.J. Steen, The effect of spreading sodium bicarbonate over the surface of grass silage on the intake of grass silages by beef cattle, Animal Feed. Sci. Technol. 67 (1) (1997) 61–67. [6] B.Y. Du, Z.S. Yu, Y.L. Tian, X.Q. Ma, Effects of baking soda on Co-hydrothermal carbonization of sewage sludge and Chlorella vulgaris: Improved the environmental friendliness of hydrochar incineration process, J. Environ. Chem. Eng. 9 (6) (2021) 106404. [7] A. Gerard, H. Muhr, E. Plasari, D. Jacob, C.E. Lefaucheur, Effect of calcium based additives on the sodium bicarbonate crystallization in a MSMPR reactor, Powder Technol. 255 (2014) 134–140. [8] N. Martınez-Cruz, F. Carrillo-Romo, D. Jaramillo-Vigueras, Effect of molecular weight of polystyrensulfonic acid sodium salt polymers on the precipitation kinetics of sodium bicarbonate, J. Cryst. Growth 270 (3–4) (2004) 573–581. [9] S.F. Jiang, Y.D. Zhang, Z.B. Li, A new industrial process of NaHCO3 and its crystallization kinetics by using the common ion effect of Na2CO3, Chem. Eng. J. 360 (2019) 740–749. [10] Y. Yani, P.S. Chow, R.B. Tan, Molecular simulation study of the effect of various additives on salbutamol sulfate crystal habit, Mol. Pharm. 8 (5) (2011) 1910–1918. [11] J. Prywer, Explanation of some peculiarities of crystal morphology deduced from the BFDH law, J. Cryst. Growth 270 (3-4) (2004) 699–710. [12] P.P. Cui, Q.X. Yin, S.H. Zhang, X.W. Cheng, J.Y. Dai, Z.X. Zhang, L. Zhou, C. Xie, The effect of solvents on crystal morphology of sucralose: Experiments and molecular dynamics simulation studies, J. Cryst. Growth 532 (2020) 125398. [13] P. Hartman, P. Bennema, The attachment energy as a habit controlling factor: I. Theoretical considerations, J. Cryst. Growth 49 (1) (1980) 145–156. [14] P. Hartman, The attachment energy as a habit controlling factor II. Application to anthracene, tin tetraiodide and orthorhombic sulphur, J. Cryst. Growth 49 (1) (1980) 157–165. [15] A.S. Myerson, S.M. Jang, A comparison of binding energy and metastable zone width for adipic acid with various additives, J. Cryst. Growth 156 (4) (1995) 459–466. [16] C. Schmidt, J. Ulrich, Predicting crystal morphology grown from solution, Chem. Eng. Technol. 35 (6) (2012) 1009–1012. [17] J.X. Chen, J.K. Wang, Y. Zhang, H. Wu, W. Chen, Z.C. Guo, Crystal growth, structure and morphology of hydrocortisone methanol solvate, J. Cryst. Growth 265 (1–2) (2004) 266–273. [18] S. Ma, J. Yuan, Y. Liu, S. Chang, J. Wang, Y. Yu, Prediction of crystal morphology on NTO, Chin. J. Explos. Propell. 37 (1) (2014) 53–57. (in Chinese) [19] N. Liu, B. Wang, Y. Shu, Z. Wu, Q. Zhou, Q. Zhao, W. Wang, Molecular dynamics simulation on crystal morphology of FOX-7, Chin. J. Explos. Propell. 39 (2) (2016) 40–44. (in Chinese) [20] X.H. Duan, C.X. Wei, Y.G. Liu, C.H. Pei, A molecular dynamics simulation of solvent effects on the crystal morphology of HMX, J. Hazard. Mater. 174 (1–3) (2010) 175–180. [21] Y.Z. Liu, S.Y. Niu, W.P. Lai, T. Yu, Y.D. Ma, H.X. Gao, F.Q. Zhao, Z.X. Ge, Crystal morphology prediction of energetic materials grown from solution: Insights into the accurate calculation of attachment energies, CrystEngComm 21 (33) (2019) 4910–4917. [22] H. Chen, S.J. Duan, Y.Z. Sun, X.F. Song, J.G. Yu, Molecular dynamics simulations of solvent effects on the crystal morphology of lithium carbonate, RSC Adv. 10 (10) (2020) 5604–5609. [23] Z. Berkovitch-Yellin, Toward an ab initio derivation of crystal morphology, J. Am. Chem. Soc. 107 (26) (1985) 8239–8253. [24] J.W. Li, S.H. Zhang, R.J. Gou, G. Han, M.H. Chen, The effect of crystal–solvent interaction on crystal growth and morphology, J. Cryst. Growth 507 (2019) 260–269. [25] L. Song, L.Z. Chen, D.L. Cao, J.L. Wang, Solvent selection for explaining the morphology of nitroguanidine crystal by molecular dynamics simulation, J. Cryst. Growth 483 (2018) 308–317. [26] M.L. Connolly, Solvent-accessible surfaces of proteins and nucleic acids, Science 221 (4612) (1983) 709–713. [27] H. Sun, COMPASS: An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds, J. Phys. Chem. B 102 (38) (1998) 7338–7364. [28] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: A generic force field for molecular simulations, J. Phys. Chem. 94 (26) (1990) 8897–8909. [29] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (25) (1992) 10024–10035. [30] H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, An ab initio CFF93 all-atom force field for polycarbonates, J. Am. Chem. Soc. 116 (7) (1994) 2978–2987. [31] P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, A.T. Hagler, Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins Struct. Funct. Genet. 4 (1) (1988) 31–47. [32] D.R. Lide, CRC Handbook of Chemistry and Physics, 88th Edition, Taylor & Francis, Boca Raton, 2007–2008, 12–19 to 12–27. [33] J. Li, S.H. Jin, G.C. Lan, X. Ma, J. Ruan, B. Zhang, S.S. Chen, L.J. Li, Morphology control of 3-nitro-1, 2, 4-triazole-5-one (NTO) by molecular dynamics simulation, CrystEngComm 20 (40) (2018) 6252–6260. [34] Y.P. Zhao, G.W. Su, G.Z. Liu, H.Y. Wei, L.P. Dang, Effect of modification of binary solvent molecules on ε-CL-20 crystal morphology: A molecular dynamics study, CrystEngComm 23 (19) (2021) 3524–3536. [35] H. Xie, R.J. Gou, S.H. Zhang, Theoretical study on the effect of solvent behavior on ammonium dinitramide (ADN)/1, 4, 7, 10, 13, 16-hexaoxacyclooctadecane (18-crown-6) cocrystal growth morphology at different temperatures, Cryst. Res. Technol. 56 (4) (2021) 2000203. |