Chinese Journal of Chemical Engineering ›› 2023, Vol. 56 ›› Issue (4): 299-313.DOI: 10.1016/j.cjche.2022.08.008
• Review • Previous Articles Next Articles
Wufeng Wu1, Xilu Hong1, Jiang Fan1, Yanying Wei1, Haihui Wang2
Received:
2022-03-12
Revised:
2022-08-22
Online:
2023-06-13
Published:
2023-04-28
Contact:
Yanying Wei,E-mail:ceyywei@scut.edu.cn;Haihui Wang,E-mail:cehhwang@tsinghua.edu.cn
Supported by:
Wufeng Wu1, Xilu Hong1, Jiang Fan1, Yanying Wei1, Haihui Wang2
通讯作者:
Yanying Wei,E-mail:ceyywei@scut.edu.cn;Haihui Wang,E-mail:cehhwang@tsinghua.edu.cn
基金资助:
Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation[J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313.
Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation[J]. 中国化学工程学报, 2023, 56(4): 299-313.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.08.008
[1] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 532 (7600) (2016) 435–437. [2] Liu Y, Ban Y, Yang W, Microstructural engineering and architectural design of metal–organic framework membranes, Adv. Mater. 29 (31) (2017) 1606949. [3] S.J. Xiao, X.W. Huo, S.X. Fan, K. Zhao, S.W. Yu, X.Y. Tan, Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance, Chin. J. Chem. Eng. 29 (2021) 110–120. [4] Z.X. Kang, L.L. Fan, D.F. Sun, Recent advances and challenges of metal–organic framework membranes for gas separation, J. Mater. Chem. A 5 (21) (2017) 10073–10091. [5] M. Niknam Shahrak, M. Niknam Shahrak, A. Shahsavand, N. Khazeni, X.F. Wu, S.G. Deng, Synthesis, gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO2 and water adsorption, Chin. J. Chem. Eng. 25 (5) (2017) 595–601. [6] S.L. Qiu, M. Xue, G.S. Zhu, Metal–organic framework membranes: From synthesis to separation application, Chem. Soc. Rev. 43 (16) (2014) 6116–6140. [7] M.M. Zhai, T. Yoshioka, J.H. Yang, J.Q. Wang, D.L. Zhang, J.M. Lu, Y. Zhang, Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane, Chin. J. Chem. Eng. 33 (2021) 104–111. [8] M.S. Denny, J.C. Moreton, L. Benz, S.M. Cohen, Metal–organic frameworks for membrane-based separations, Nat. Rev. Mater. 1 (2016) 16078. [9] W.D. Li, F.S. Pan, Y.M. Song, M.D. Wang, H.J. Wang, S. Walker, H. Wu, Z.Y. Jiang, Construction of molecule-selective mixed matrix membranes with confined mass transfer structure, Chin. J. Chem. Eng. 25 (11) (2017) 1563–1580. [10] Y.L. Ji, W.J. Qian, Y.W. Yu, Q.F. An, L.F. Liu, Y. Zhou, C.J. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chin. J. Chem. Eng. 25 (11) (2017) 1639–1652. [11] H. Bux, F.Y. Liang, Y.S. Li, J. Cravillon, M. Wiebcke, J. Caro, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis, J. Am. Chem. Soc. 131 (44) (2009) 16000–16001. [12] H.T. Kwon, H.K. Jeong, In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation, J. Am. Chem. Soc. 135 (29) (2013) 10763–10768. [13] V.M. Aceituno Melgar, H.T. Kwon, J. Kim, Direct spraying approach for synthesis of ZIF-7 membranes by electrospray deposition, J. Membr. Sci. 459 (2014) 190–196. [14] A.S. Huang, W. Dou, J. Caro, Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization, J. Am. Chem. Soc. 132 (44) (2010) 15562–15564. [15] Y.Y. Liu, Z. Ng, E.A. Khan, H.K. Jeong, C.B. Ching, Z.P. Lai, Synthesis of continuous MOF-5 membranes on porous α-alumina substrates, Microporous Mesoporous Mater. 118 (1–3) (2009) 296–301. [16] Y. Yoo, Z.P. Lai, H.K. Jeong, Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth, Microporous Mesoporous Mater. 123 (1–3) (2009) 100–106. [17] X. Liu, N.K. Demir, Z. Wu, K. Li, Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination, J. Am. Chem. Soc. 137 (22) (2015) 6999–7002. [18] X.L. Liu, C.H. Wang, B. Wang, K. Li, Novel organic-dehydration membranes prepared from zirconium metal–organic frameworks, Adv. Funct. Mater. 27 (3) (2017) 1604311. [19] V.V. Guerrero, Y. Yoo, M.C. McCarthy, H.K. Jeong, HKUST-1 membranes on porous supports using secondary growth, J. Mater. Chem. 20 (19) (2010) 3938–3943. [20] W.B. Li, Metal–organic framework membranes: Production, modification, and applications, Prog. Mater. Sci. 100 (2019) 21–63. [21] Z.G. Wang, D. Wang, S.X. Zhang, L. Hu, J. Jin, Interfacial design of mixed matrix membranes for improved gas separation performance, Adv. Mater. 28 (17) (2016) 3399–3405. [22] M. Wang, Z. Wang, S. Zhao, J.X. Wang, S.C. Wang, Recent advances on mixed matrix membranes for CO2 separation, Chin. J. Chem. Eng. 25 (11) (2017) 1581–1597. [23] Z.Y. Yeo, S.P. Chai, P.W. Zhu, A.R. Mohamed, An overview: Synthesis of thin films/membranes of metal organic frameworks and its gas separation performances, RSC Adv. 4 (97) (2014) 54322–54334. [24] J.X. Liu, C. Wöll, Surface-supported metal–organic framework thin films: Fabrication methods, applications, and challenges, Chem. Soc. Rev. 46 (19) (2017) 5730–5770. [25] C. Zhang, B.H. Wu, M.Q. Ma, Z.K. Wang, Z.K. Xu, Ultrathin metal/covalent–organic framework membranes towards ultimate separation, Chem. Soc. Rev. 48 (14) (2019) 3811–3841. [26] X. Li, Y.X. Liu, J. Wang, J. Gascon, J.S. Li, B. van der Bruggen, Metal–organic frameworks based membranes for liquid separation, Chem. Soc. Rev. 46 (23) (2017) 7124–7144. [27] D.J. Babu, G.W. He, L.F. Villalobos, K.V. Agrawal, Crystal engineering of metal–organic framework thin films for gas separations, ACS Sustain. Chem. Eng. 7 (1) (2019) 49–69. [28] H.F. Zhang, D.F. Liu, Y. Yao, B.Q. Zhang, Y.S. Lin, Stability of ZIF-8 membranes and crystalline powders in water at room temperature, J. Membr. Sci. 485 (2015) 103–111. [29] Y.Y. Huang, D.H. Liu, Z.P. Liu, C.L. Zhong, Synthesis of zeolitic imidazolate framework membrane using temperature-switching synthesis strategy for gas separation, Ind. Eng. Chem. Res. 55 (26) (2016) 7164–7170. [30] F. Hillman, J. Brito, H.K. Jeong, Rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework membranes for tunable gas separations, ACS Appl. Mater. Interfaces 10 (6) (2018) 5586–5593. [31] Y. Peng, Y.S. Li, Y.J. Ban, W.S. Yang, Two-dimensional metal–organic framework nanosheets for membrane-based gas separation, Angew. Chem. Int. Ed. 56 (33) (2017) 9757–9761. [32] Z.Z. Xie, T. Li, N.L. Rosi, M.A. Carreon, Alumina-supported cobalt–adeninate MOF membranes for CO2/CH4 separation, J. Mater. Chem. A 2 (5) (2014) 1239–1241. [33] M.N. Shah, M.A. Gonzalez, M.C. McCarthy, H.K. Jeong, An unconventional rapid synthesis of high performance metal–organic framework membranes, Langmuir 29 (25) (2013) 7896–7902. [34] F. Zhang, X.Q. Zou, X. Gao, S.J. Fan, F.X. Sun, H. Ren, G.S. Zhu, Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability, Adv. Funct. Mater. 22 (17) (2012) 3583–3590. [35] Y.C. Pan, B. W, Z.P. Lai, Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability, J. Membr. Sci. 421–422 (2012) 292–298. [36] K. Huang, B. Wang, Y.S. Chi, K. Li, High propylene selective metal–organic framework membranes prepared in confined spaces via convective circulation synthesis, Adv. Mater. Interfaces 5 (18) (2018) 1800287. [37] X.L. Dong, Y.S. Lin, Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation, Chem. Commun. 49 (12) (2013) 1196–1198. [38] X.L. Dong, K. Huang, S.N. Liu, R.F. Ren, W.Q. Jin, Y.S. Lin, Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: Defect formation and elimination, J. Mater. Chem. 22 (36) (2012) 19222–19227. [39] W.J. Wang, X.L. Dong, J.P. Nan, W.Q. Jin, Z.Q. Hu, Y.F. Chen, J.W. Jiang, A homochiral metal–organic framework membrane for enantioselective separation, Chem. Commun. 48 (56) (2012) 7022–7024. [40] K. Huang, S.N. Liu, Q.Q. Li, W.Q. Jin, Preparation of novel metal–carboxylate system MOF membrane for gas separation, Sep. Purif. Technol. 119 (2013) 94–101. [41] Y. Wang, H.H. Chen, X.B. Wang, B. Meng, N.T. Yang, X.Y. Tan, S.M. Liu, Preparation of ZIF-8 membranes on porous ZnO hollow fibers by a facile ZnO-induced method, Ind. Eng. Chem. Res. 59 (35) (2020) 15576–15585. [42] Y.X. Hu, J. Wei, Y. Liang, H.C. Zhang, X.W. Zhang, W. Shen, H.T. Wang, Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes, Angew. Chem. Int. Ed. 55 (6) (2016) 2048–2052. [43] G.W. He, M. Dakhchoune, J. Zhao, S.Q. Huang, K.V. Agrawal, Electrophoretic nuclei assembly for crystallization of high-performance membranes on unmodified supports, Adv. Funct. Mater. 28 (20) (2018) 1707427. [44] S. Zhou, Y.Y. Wei, L.B. Li, Y.F. Duan, Q.Q. Hou, L.L. Zhang, L.X. Ding, J. Xue, H.H. Wang, J. Caro, Paralyzed membrane: Current-driven synthesis of a metal–organic framework with sharpened propene/propane separation, Sci. Adv. 4 (10) (2018) eaau1393. [45] Q.Q. Hou, Y. Wu, S. Zhou, Y.Y. Wei, J. Caro, H.H. Wang, Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation, Angew. Chem. Int. Ed. 58 (1) (2019) 327–331. [46] Q.Q. Hou, S. Zhou, Y.Y. Wei, J. Caro, H.H. Wang, Balancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separation, J. Am. Chem. Soc. (2020) 9582–9586. [47] H.L. Zhang, X.B. Wang, L.Y. Wei, B. Meng, X.Y. Tan, W.Q. Jin, S.M. Liu, A simple seed-embedded method to prepare ZIF-8 membranes supported on flexible PESf hollow fibers, J. Ind. Eng. Chem. 72 (2019) 222–231. [48] Y.N. Ma, Y.X. Sun, J. Yin, H.S. Sun, H. Wu, H. Wang, Y.F. Zhang, X.S. Feng, J.Q. Meng, A MOF membrane with ultrathin ZIF-8 layer bonded on ZIF-8 in situ embedded PSf substrate, J. Taiwan Inst. Chem. Eng. 104 (2019) 273–283. [49] K. Huang, B. Wang, S. Guo, K. Li, Micropatterned ultrathin MOF membranes with enhanced molecular sieving property, Angew. Chem. Int. Ed. 57 (42) (2018) 13892–13896. [50] W.D. Fan, Y.P. Ying, S.B. Peh, H.Y. Yuan, Z.Q. Yang, Y.D. Yuan, D.C. Shi, X. Yu, C.J. Kang, D. Zhao, Multivariate polycrystalline metal–organic framework membranes for CO2/CH4 separation, J. Am. Chem. Soc. 143 (42) (2021) 17716–17723. [51] Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, Y.M. Lee, Metal–organic framework membranes fabricated via reactive seeding, Chem. Commun. 47 (2) (2011) 737–739. [52] J.P. Nan, X.L. Dong, W.J. Wang, W.Q. Jin, Formation mechanism of metal–organic framework membranes derived from reactive seeding approach, Microporous Mesoporous Mater. 155 (2012) 90–98. [53] H.L. Guo, G.S. Zhu, I.J. Hewitt, S.L. Qiu, “Twin copper source” growth of metal–organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2, J. Am. Chem. Soc. 131 (5) (2009) 1646–1647. [54] Z.X. Kang, M. Xue, L.L. Fan, J.Y. Ding, L.J. Guo, L.X. Gao, S.L. Qiu, “Single nickel source” in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties, Chem. Commun. 49 (90) (2013) 10569–10571. [55] Z.X. Kang, M. Xue, L.L. Fan, L. Huang, L.J. Guo, G.Y. Wei, B.L. Chen, S.L. Qiu, Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane, Energy Environ. Sci. 7 (12) (2014) 4053–4060. [56] Z.X. Kang, L.L. Fan, S.S. Wang, D.F. Sun, M. Xue, S.L. Qiu, In situ confinement of free linkers within a stable MOF membrane for highly improved gas separation properties, CrystEngComm 19 (12) (2017) 1601–1606. [57] A.S. Huang, Q. Liu, N.Y. Wang, J. Caro, Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets, J. Mater. Chem. A 2 (22) (2014) 8246–8251. [58] Y.X. Sun, F. Yang, Q. Wei, N.X. Wang, X. Qin, S.K. Zhang, B. Wang, Z.R. Nie, S.L. Ji, H. Yan, J.R. Li, Oriented nano-microstructure-assisted controllable fabrication of metal–organic framework membranes on nickel foam, Adv. Mater. 28 (12) (2016) 2374–2381. [59] X. Qin, Y.X. Sun, N.X. Wang, Q. Wei, L.H. Xie, Y.B. Xie, J.R. Li, Nanostructure array assisted aggregation-based growth of a Co-MOF-74 membrane on a Ni-foam substrate for gas separation, RSC Adv. 6 (96) (2016) 94177–94183. [60] X.L. Hong, Z. Lu, Y.L. Zhao, L.X. Lyu, L. Ding, Y.Y. Wei, H.H. Wang, Fast fabrication of freestanding MXene-ZIF-8 dual-layered membranes for H2/CO2 separation, J. Membr. Sci. 642 (2022) 119982. [61] S. Zhou, Y.Y. Wei, L.B. Zhuang, L.X. Ding, H.H. Wang, Introduction of metal precursors by electrodeposition for the in situ growth of metal–organic framework membranes on porous metal substrates, J. Mater. Chem. A 5 (5) (2017) 1948–1951. [62] S. Zhou, Y.Y. Wei, J.M. Hou, L.X. Ding, H.H. Wang, Self-sacrificial template strategy coupled with smart in situ seeding for highly oriented metal–organic framework layers: From films to membranes, Chem. Mater. 29 (17) (2017) 7103–7107. [63] J.M. Hou, X.L. Hong, S. Zhou, Y.Y. Wei, H.H. Wang, Solvent-free route for metal–organic framework membranes growth aiming for efficient gas separation, AIChE J. 65 (2) (2019) 712–722. [64] W.B. Li, Z.H. Yang, G.L. Zhang, Z. Fan, Q. Meng, C. Shen, C.J. Gao, Stiff metal–organic framework–polyacrylonitrile hollow fiber composite membranes with high gas permeability, J. Mater. Chem. A 2 (7) (2014) 2110–2118. [65] W.B. Li, Q. Meng, C.Y. Zhang, G.L. Zhang, Metal–organic framework/PVDF composite membranes with high H2 permselectivity synthesized by ammoniation, Chem. Eur. J. 21 (19) (2015) 7224–7230. [66] E. Shamsaei, Z.X. Low, X.C. Lin, A. Mayahi, H.Y. Liu, X.W. Zhang, J. Zhe Liu, H.T. Wang, Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support, Chem. Commun. 51 (57) (2015) 11474–11477. [67] E. Shamsaei, X.C. Lin, Z.X. Low, Z. Abbasi, Y.X. Hu, J.Z. Liu, H.T. Wang, Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate, ACS Appl. Mater. Interfaces 8 (9) (2016) 6236–6244. [68] E. Barankova, X.Y. Tan, L.F. Villalobos, E. Litwiller, K.V. Peinemann, A metal chelating porous polymeric support: The missing link for a defect-free metal–organic framework composite membrane, Angew. Chem. Int. Ed. 56 (11) (2017) 2965–2968. [69] M.R. Abdul Hamid, S. Park, J.S. Kim, Y.M. Lee, H.K. Jeong, In situ formation of zeolitic–imidazolate framework thin films and composites using modified polymer substrates, J. Mater. Chem. A 7 (16) (2019) 9680–9689. [70] M.R. Abdul Hamid, S. Park, J.S. Kim, Y.M. Lee, H.K. Jeong, Synthesis of ultrathin zeolitic imidazolate framework ZIF-8 membranes on polymer hollow fibers using a polymer modification strategy for propylene/propane separation, Ind. Eng. Chem. Res. 58 (32) (2019) 14947–14953. [71] E. Barankova, N. Pradeep, K.V. Peinemann, Zeolite–imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate, Chem. Commun. 49 (82) (2013) 9419. [72] L. Ge, W. Zhou, A.J. Du, Z.H. Zhu, Porous polyethersulfone-supported zeolitic imidazolate framework membranes for hydrogen separation, J. Phys. Chem. C 116 (24) (2012) 13264–13270. [73] Y.L. Zhao, Y.Y. Wei, L.X. Lyu, Q.Q. Hou, J. Caro, H.H. Wang, Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation, J. Am. Chem. Soc. 142 (50) (2020) 20915–20919. [74] J.W. Hou, P.D. Sutrisna, Y.T. Zhang, V. Chen, Formation of ultrathin, continuous metal–organic framework membranes on flexible polymer substrates, Angew. Chem. Int. Ed. 55 (12) (2016) 3947–3951. [75] Y.N. Wu, F.T. Li, H.M. Liu, W. Zhu, M.M. Teng, Y. Jiang, W.N. Li, D. Xu, D.H. He, P. Hannam, G.T. Li, Electrospun fibrous mats as skeletons to produce free-standing MOF membranes, J. Mater. Chem. 22 (33) (2012) 16971–16978. [76] L. Dumée, L. He, M. Hill, B. Zhu, M. Duke, J. Schütz, F.S. She, H.T. Wang, S. Gray, P. Hodgson, L.X. Kong, Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes, J. Mater. Chem. A 1 (32) (2013) 9208–9214. [77] S.X. Zhang, Z.G. Wang, H.T. Ren, F. Zhang, J. Jin, Nanoporous film-mediated growth of ultrathin and continuous metal–organic framework membranes for high-performance hydrogen separation, J. Mater. Chem. A 5 (5) (2017) 1962–1966. [78] A.S. Huang, H. Bux, F. Steinbach, J. Caro, Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker, Angew. Chem. Int. Ed. 49 (29) (2010) 4958–4961. [79] A.S. Huang, Y.F. Chen, N.Y. Wang, Z.Q. Hu, J.W. Jiang, J. Caro, A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation, Chem. Commun. 48 (89) (2012) 10981–10983. [80] J.Q. Liu, C.Y. Liu, A.S. Huang, Co-based zeolitic imidazolate framework ZIF-9 membranes prepared on α-Al2O3 tubes through covalent modification for hydrogen separation, Int. J. Hydrog. Energy 45 (1) (2020) 703–711. [81] Z.X. Kang, J.Y. Ding, L.L. Fan, M. Xue, D.L. Zhang, L.X. Gao, S.L. Qiu, Preparation of a MOF membrane with 3-aminopropyltriethoxysilane as covalent linker for xylene isomers separation, Inorg. Chem. Commun. 30 (2013) 74–78. [82] Z. Xie, J.H. Yang, J.Q. Wang, J. Bai, H.M. Yin, B. Yuan, J.M. Lu, Y. Zhang, L. Zhou, C.Y. Duan, Deposition of chemically modified α-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube, Chem. Commun. 48 (48) (2012) 5977–5979. [83] M.C. McCarthy, V. Varela-Guerrero, G.V. Barnett, H.K. Jeong, Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures, Langmuir 26 (18) (2010) 14636–14641. [84] Q. Liu, N.Y. Wang, J. Caro, A.S. Huang, Bio-inspired polydopamine: A versatile and powerful platform for covalent synthesis of molecular sieve membranes, J. Am. Chem. Soc. 135 (47) (2013) 17679–17682. [85] A.S. Huang, Q. Liu, N.Y. Wang, Y.Q. Zhu, J. Caro, Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity, J. Am. Chem. Soc. 136 (42) (2014) 14686–14689. [86] N.Y. Wang, Y. Liu, Z.W. Qiao, L. Diestel, J. Zhou, A.S. Huang, J. Caro, Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity, J. Mater. Chem. A 3 (8) (2015) 4722–4728. [87] X.C. Wu, W. Wei, J.W. Jiang, J. Caro, A.S. Huang, High-flux high-selectivity metal–organic framework MIL-160 membrane for xylene isomer separation by pervaporation, Angew. Chem. Int. Ed. 57 (47) (2018) 15354–15358. [88] S.Y. Zhou, X.Q. Zou, F.X. Sun, F. Zhang, S.J. Fan, H.J. Zhao, T. Schiestel, G.S. Zhu, Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation, J. Mater. Chem. 22 (20) (2012) 10322–10328. [89] R. Ranjan, M. Tsapatsis, Microporous metal organic framework membrane on porous support using the seeded growth method, Chem. Mater. 21 (20) (2009) 4920–4924. [90] T. Ben, C.J. Lu, C.Y. Pei, S.X. Xu, S.L. Qiu, Polymer-supported and free-standing metal–organic framework membrane, Chem. Eur. J. 18 (33) (2012) 10250–10253. [91] H.T. Kwon, H.K. Jeong, Highly propylene-selective supported zeolite–imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth, Chem. Commun. 49 (37) (2013) 3854–3856. [92] R. Wu, Y.H. Li, A.S. Huang, Synthesis of high-performance Co-based ZIF-67 membrane for H2 separation by using cobalt ions chelated PIM-1 as interface layer, J. Membr. Sci. 620 (2021) 118841. [93] C.J. Yu, Y.Y. Liang, W.J. Xue, Z.Q. Zhang, X.M. Jia, H.L. Huang, Z.H. Qiao, D.H. Mei, C.L. Zhong, Polymer-supported ultra-thin ZIF-67 membrane through in situ interface self-repair, J. Membr. Sci. 625 (2021) 119139. [94] Y. Liu, Y. Peng, N. Wang, Y. Li, J.H. Pan, W. Yang, J. Caro, Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors, ChemSusChem 8 (21) (2015) 3582–3586. [95] L.Y. Kong, X.F. Zhang, H.O. Liu, J.S. Qiu, Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer, J. Membr. Sci. 490 (2015) 354–363. [96] A. Kasik, J. James, Y.S. Lin, Synthesis of ZIF-68 membrane on a ZnO modified α-alumina support by a modified reactive seeding method, Ind. Eng. Chem. Res. 55 (10) (2016) 2831–2839. [97] B. Reif, J. Somboonvong, F. Fabisch, M. Kaspereit, M. Hartmann, W. Schwieger, Solvent-free transformation of spray coated ZnO layers to ZIF-8 membranes, Microporous Mesoporous Mater. 276 (2019) 29–40. [98] M. Drobek, M. Bechelany, C. Vallicari, A. Abou Chaaya, C. Charmette, C. Salvador-Levehang, P. Miele, A. Julbe, An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers, J. Membr. Sci. 475 (2015) 39–46. [99] X. Ma, P. Kumar, N. Mittal, A. Khlyustova, P. Daoutidis, K.A. Mkhoyan, M. Tsapatsis, Zeolitic imidazolate framework membranes made by ligand-induced permselectivation, Science 361 (6406) (2018) 1008–1011. [100] Y.Y. Mao, W. Cao, J.W. Li, Y. Liu, Y.L. Ying, L.W. Sun, X.S. Peng, Enhanced gas separation through well-intergrown MOF membranes: Seed morphology and crystal growth effects, J. Mater. Chem. A 1 (38) (2013) 11711–11716. [101] J.W. Li, W. Cao, Y.Y. Mao, Y.L. Ying, L.W. Sun, X.S. Peng, Zinc hydroxide nanostrands: Unique precursors for synthesis of ZIF-8 thin membranes exhibiting high size-sieving ability for gas separation, CrystEngComm 16 (42) (2014) 9788–9791. [102] X.F. Zhang, Y.G. Liu, S.H. Li, L.Y. Kong, H.O. Liu, Y.S. Li, W. Han, K.L. Yeung, W.D. Zhu, W.S. Yang, J.S. Qiu, New membrane architecture with high performance: ZIF-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation, Chem. Mater. 26 (5) (2014) 1975–1981. [103] Y.J. Li, C.C. Ma, P. Nian, H.O. Liu, X.F. Zhang, Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water–solvent solution by ZnO nanorods self-converted strategy for gas separation, J. Membr. Sci. 581 (2019) 344–354. [104] P. Nian, Y.J. Li, X. Zhang, Y. Cao, H.O. Liu, X.F. Zhang, ZnO nanorod-induced heteroepitaxial growth of SOD type Co-based zeolitic imidazolate framework membranes for H2 separation, ACS Appl. Mater. Interfaces 10 (4) (2018) 4151–4160. [105] P. Nian, Y. Cao, Y.J. Li, X. Zhang, Y.L. Wang, H.O. Liu, X.F. Zhang, Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H2 separation, CrystEngComm 20 (17) (2018) 2440–2448. [106] Y. Liu, N.Y. Wang, L. Diestel, F. Steinbach, J. Caro, MOF membrane synthesis in the confined space of a vertically aligned LDH network, Chem. Commun. 50 (32) (2014) 4225–4227. [107] Y. Liu, N. Wang, J.H. Pan, F. Steinbach, J. Caro, In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates, J. Am. Chem. Soc. 136 (41) (2014) 14353–14356. [108] Y. Liu, J.H. Pan, N.Y. Wang, F. Steinbach, X.L. Liu, J. Caro, Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal–organic frameworks, Angew. Chem. Int. Ed. 54 (10) (2015) 3028–3032. [109] X.F. Zhang, Y.G. Liu, L.Y. Kong, H.O. Liu, J.S. Qiu, W. Han, L.T. Weng, K.L. Yeung, W.D. Zhu, A simple and scalable method for preparing low-defect ZIF-8 tubular membranes, J. Mater. Chem. A 1 (36) (2013) 10635–10638. [110] P.C. Su, W.B. Li, C.Y. Zhang, Q. Meng, C. Shen, G.L. Zhang, Metal based gels as versatile precursors to synthesize stiff and integrated MOF/polymer composite membranes, J. Mater. Chem. A 3 (40) (2015) 20345–20351. [111] W.B. Li, P.C. Su, Z.J. Li, Z.H. Xu, F. Wang, H.S. Ou, J.H. Zhang, G.L. Zhang, E. Zeng, Ultrathin metal–organic framework membrane production by gel–vapour deposition, Nat. Commun. 8 (1) (2017) 406. [112] L.L. Liu, M. Zhang, T.T. Ji, J.H. Yan, Y.W. Sun, G.H. He, Y. Liu, Sustainable fabrication of the zeolitic imidazolate framework-67 membrane via supercritical fluid processing of the Co-based gel layer, Chem. Mater. 33 (18) (2021) 7350–7356. [113] S.R. Venna, M.A. Carreon, Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation, J. Am. Chem. Soc. 132 (1) (2010) 76–78. [114] K. Tao, C.L. Kong, L. Chen, High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition, Chem. Eng. J. 220 (2013) 1–5. [115] Z.X. Zhao, X.L. Ma, Z. Li, Y.S. Lin, Synthesis, characterization and gas transport properties of MOF-5 membranes, J. Membr. Sci. 382 (1–2) (2011) 82–90. [116] J.W. Yuan, W.S. Hung, H.P. Zhu, K.C. Guan, Y.F. Ji, Y.Y. Mao, G.P. Liu, K.R. Lee, W.Q. Jin, Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater, J. Membr. Sci. 572 (2019) 20–27. [117] N.T. Tran, J. Kim, M.R. Othman, Microporous ZIF-8 and ZIF-67 membranes grown on mesoporous alumina substrate for selective propylene transport, Sep. Purif. Technol. 233 (2020) 116026. [118] Z. Li, P.P. Yang, S.C. Yan, Q.R. Fang, M. Xue, S.L. Qiu, A robust zeolitic imidazolate framework membrane with high H2/CO2 separation performance under hydrothermal conditions, ACS Appl. Mater. Interfaces 11 (17) (2019) 15748–15755. [119] F.C. Wu, L. Lin, H.O. Liu, H.T. Wang, J.S. Qiu, X.F. Zhang, Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth, J. Membr. Sci. 544 (2017) 342–350. [120] K. Tao, L.J. Cao, Y.C. Lin, C.L. Kong, L. Chen, A hollow ceramic fiber supported ZIF-8 membrane with enhanced gas separation performance prepared by hot dip-coating seeding, J. Mater. Chem. A 1 (42) (2013) 13046–13049. [121] Y.S. Li, F.Y. Liang, H. Bux, A. Feldhoff, W.S. Yang, J. Caro, Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity, Angew. Chem. Int. Ed. 49 (3) (2010) 548–551. [122] H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y.S. Li, J. Caro, Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation, Chem. Mater. 23 (8) (2011) 2262–2269. [123] D.M. Jiang, A.D. Burrows, Y.L. Xiong, K.J. Edler, Facile synthesis of crack-free metal–organic framework films on alumina by a dip-coating route in the presence of polyethylenimine, J. Mater. Chem. A 1 (18) (2013) 5497–5500. [124] Q. Ma, K. Mo, S.S. Gao, Y.F. Xie, J.Z. Wang, H. Jin, A. Feldhoff, S.T. Xu, J.Y.S. Lin, Y.S. Li, Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation, Angew. Chem. Int. Ed. 59 (49) (2020) 21909–21914. [125] Q. Ma, X. Wang, H. Jin, S.W. Feng, W. Fang, Y.S. Li, Highly permeable ZIF-8 membranes for propylene permselective pervaporation under high pressure up to 20 bar, J. Membr. Sci. 643 (2022) 120055. [126] J.Y. Zhu, J.W. Hou, A. Uliana, Y.T. Zhang, M.M. Tian, B. van der Bruggen, The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes, J. Mater. Chem. A 6 (9) (2018) 3773–3792. [127] Z.Y. Yeo, P.W. Zhu, A.R. Mohamed, S.P. Chai, A well inter-grown ZIF-8 membrane synthesized via two-step hydrothermal synthesis on coarse α-Al2O3 support, Mater. Lett. 129 (2014) 162–165. [128] Y.N. Ma, Z.P. Dong, M. You, Y.F. Zhang, X.S. Feng, X.H. Ma, J.Q. Meng, Formation of a thin and continuous MOF membrane with 2-D MOF nanosheets as seeds via layer-by-layer growth, Chem. Commun. 55 (68) (2019) 10146–10149. [129] X.X. Ma, Y.H. Li, A.S. Huang, Synthesis of nano-sheets seeds for secondary growth of highly hydrogen permselective ZIF-95 membranes, J. Membr. Sci. 597 (2020) 117629. [130] X.X. Ma, Z. Wan, Y.H. Li, X. He, J. Caro, A.S. Huang, Anisotropic gas separation in oriented ZIF-95 membranes prepared by vapor-assisted in-plane epitaxial growth, Angew. Chem. Int. Ed. 59 (47) (2020) 20858–20862. [131] W.B. Li, G.L. Zhang, C.Y. Zhang, Q. Meng, Z. Fan, C.J. Gao, Synthesis of trinity metal–organic framework membranes for CO2 capture, Chem. Commun. 50 (24) (2014) 3214–3216. [132] L.L. Fan, M. Xue, Z.X. Kang, H. Li, S.L. Qiu, Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis, J. Mater. Chem. 22 (48) (2012) 25272–25276. [133] J. Hao, D.J. Babu, Q. Liu, H.Y. Chi, C.X. Lu, Y.D. Liu, K.V. Agrawal, Synthesis of high-performance polycrystalline metal–organic framework membranes at room temperature in a few minutes, J. Mater. Chem. A 8 (16) (2020) 7633–7640. [134] Y.W. Sun, Y. Liu, J. Caro, X.W. Guo, C.S. Song, Y. Liu, In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity, Angew. Chem. Int. Ed. 57 (49) (2018) 16088–16093. [135] Y.W. Sun, C.S. Song, X.W. Guo, Y. Liu, Concurrent manipulation of out-of-plane and regional in-plane orientations of NH2-UiO-66 membranes with significantly reduced anisotropic grain boundary and superior H2/CO2 separation performance, ACS Appl. Mater. Interfaces 12 (4) (2020) 4494–4500. |
[1] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[2] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 32-41. |
[3] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 92-104. |
[4] | Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 279-289. |
[5] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[6] | Kai Xue, Yanchun Xue, Jing Wang, Shuya Zhang, Xingmei Guo, Xiangjun Zheng, Fu Cao, Qinghong Kong, Junhao Zhang, Zhong Jin. KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 214-223. |
[7] | Shuang Qiu, Yonghou Xiao, Haoran Wu, Shengnan Lu, Qidong Zhao, Gaohong He. One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH3 at low temperature [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 193-202. |
[8] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[9] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
[10] | Aiqin Gao, Xiang Luo, Huanghuang Chen, Aiqin Hou, Hongjuan Zhang, Kongliang Xie. Design of the reactive dyes containing large planar multi-conjugated systems and their application in non-aqueous dyeing [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 264-271. |
[11] | Fei Wang, Zhiyuan Bi, Lifeng Ding, Qingyuan Yang. Large-scale computational screening of metal–organic frameworks for D2/H2 separation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 323-330. |
[12] | Tengjie Wang, Wenkai Li, Xuehui Ge, Ting Qiu, Xiaoda Wang. Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 243-250. |
[13] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 310-316. |
[14] | Xiaoyue Yao, Yu Liu, Zhenyu Chu, Wanqin Jin. Membranes for the life sciences and their future roles in medicine [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 1-20. |
[15] | Wenjun Zhang, Wenshu Ge, Min Li, Shuangqing Li, Minqiang Jiang, Xiujuan Zhang, Gaohong He. Short review on liquid membrane technology and their applications in biochemical engineering [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 21-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||