Chinese Journal of Chemical Engineering ›› 2023, Vol. 59 ›› Issue (7): 16-31.DOI: 10.1016/j.cjche.2023.01.012
Previous Articles Next Articles
Hui Jiang1, Zijian Zhao1, Ning Yu1, Yi Qin1, Zhengwei Luo2, Wenhua Geng1, Jianliang Zhu1
Received:
2022-06-13
Revised:
2023-01-03
Online:
2023-10-14
Published:
2023-07-28
Contact:
Wenhua Geng,E-mail:gengwenhua@njtech.edu.cn
Supported by:
Hui Jiang1, Zijian Zhao1, Ning Yu1, Yi Qin1, Zhengwei Luo2, Wenhua Geng1, Jianliang Zhu1
通讯作者:
Wenhua Geng,E-mail:gengwenhua@njtech.edu.cn
基金资助:
Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine[J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31.
Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine[J]. 中国化学工程学报, 2023, 59(7): 16-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2023.01.012
[1] Q. Wu, M. Liu, X. Wang, A novel chitosan based adsorbent for boron separation, Sep. Purif. Technol. 211 (2019) 162-169. [2] M.M. Nasef, M. Nallappan, Z. Ujang, Polymer-based chelating adsorbents for the selective removal of boron from water and wastewater: A review, React. Funct. Polym. 85 (2014) 54-68. [3] P. Li, C. Liu, L. Zhang, S. Zheng, Y. Zhang, Enhanced boron adsorption onto synthesized MgO nanosheets by ultrasonic method, Ultrason. Sonochem. 34 (2017) 938-946. [4] S. Nishihama, Y. Sumiyoshi, T. Ookubo, K. Yoshizuka, Adsorption of boron using glucamine-based chelate adsorbents, Desalination 310 (2013) 81-86. [5] X. Zhang, J. Wang, S. Chen, Z. Bao, H. Xing, Z. Zhang, B. Su, Q. Yang, Y. Yang, Q. Ren, A spherical N-methyl-d-glucamine-based hybrid adsorbent for highly efficient adsorption of boric acid from water, Sep. Purif. Technol. 172 (2017) 43-50. [6] Z.M. Guan, J. Lv, P. Bai, X. Guo, Boron removal from aqueous solutions by adsorption—A review, Desalination 383 (2016) 29-37. [7] D. Kavak, Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design, J. Hazard. Mater. 163 (1) (2009) 308-314. [8] N. Hilal, G.J. Kim, C. Somerfield, Boron removal from saline water: A comprehensive review, Desalination 273 (1) (2011) 23-35. [9] J. Ren, R.H. Li, Y.L. Liu, Y.R. Cheng, D.Y. Mu, R.J. Zheng, J.C. Liu, C.S. Dai, The impact of aluminum impurity on the regenerated lithium nickel cobalt manganese oxide cathode materials from spent LIBs, New J. Chem. 41 (19) (2017) 10959-10965. [10] G.L. Guo, Y. Lu, D.D. Yang, X.H. Li, M.M. Gong, Purification of thorium by precipitation, J. Radioanal. Nucl. Chem. 327 (2) (2021) 667-671. [11] L. Melnyk, V. Goncharuk, I. Butnyk, E. Tsapiuk, Boron removal from natural and wastewaters using combined sorption/membrane process, Desalination 185 (1-3) (2005) 147-157. [12] A. Farhat, F. Ahmad, N. Hilal, H.A. Arafat, Boron removal in new generation reverse osmosis (RO) membranes using two-pass RO without pH adjustment, Desalination 310 (2013) 50-59. [13] R. Zhang, Y. Xie, J. Song, L. Xing, D. Kong, X. Li, T. He, Extraction of boron from salt lake brine using 2-ethylhexanol, Hydrometallurgy 160 (2016) 129-136. [14] N. Öztürk, T.E. Köse, Boron removal from aqueous solutions by ion-exchange resin: Batch studies, Desalination 227 (1-3) (2008) 233-240. [15] A. Hussain, R. Sharma, J. Minier-Matar, Z. Hirani, S. Adham, Application of emerging ion exchange resin for boron removal from saline groundwater, J. Water Process. Eng. 32 (2019) 100906. [16] Y.A. Jarma, E. Çermikli, D. İpekçi, E. Altıok, N. Kabay, Comparison of two electrodialysis stacks having different ion exchange and bipolar membranes for simultaneous separation of boron and lithium from aqueous solution, Desalination 500 (2021) 114850. [17] L.L. Hao, P. Wang, S. Valiyaveettil, Successive extraction of As(V), Cu(II) and P(V) ions from water using spent coffee powder as renewable bioadsorbents, Sci. Rep. 7 (2017) 42881. [18] T. Kameda, J. Oba, T. Yoshioka, New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies, J. Hazard. Mater. 293 (2015) 54-63. [19] C.Y. Sun, F. Zhang, A. Wang, S. Li, F. Cheng, Direct synthesis of mesoporous aluminosilicate using natural clay from low-grade potash ores of a salt lake in Qinghai, China, and its use in octadecylamine adsorption, Appl. Clay Sci. 108 (2015) 123-127. [20] M. Hosseini Talari, N.S. Tabrizi, V. Babaeipour, F. Halek, Adsorptive removal of organic pollutants from water by carbon fiber aerogel derived from bacterial cellulose, J. Sol Gel Sci. Technol. 101 (2) (2022) 345-355. [21] N. Bicak, M. Gazi, B.F. Senkal, Polymer supported amino bis-(cis-propan 2, 3 diol) functions for removal of trace boron from water, React. Funct. Polym. 65 (1-2) (2005) 143-148. [22] M. Gazi, N. Bicak, Selective boron extraction by polymer supported 2-hydroxylethylamino propylene glycol functions, React. Funct. Polym. 67 (10) (2007) 936-942. [23] Y. Miyazaki, H. Matsuo, T. Fujimori, H. Takemura, S. Matsuoka, T. Okobira, K. Uezu, K. Yoshimura, Interaction of boric acid with salicyl derivatives as an anchor group of boron-selective adsorbents, Polyhedron 27 (13) (2008) 2785-2790. [24] H. Iwasaki, M. Yoshikawa, Molecularly imprinted polyacrylonitrile adsorbents for the capture of Cs+ ions, Polym. J. 48 (12) (2016) 1151-1156. [25] M. Taghizadeh, S. Hassanpour, Selective adsorption of Cr(VI) ions from aqueous solutions using a Cr(VI)-imprinted polymer supported by magnetic multiwall carbon nanotubes, Polymer 132 (2017) 1-11. [26] Y.B. Li, B.J. Gao, R.K. Du, Studies on preparation and recognition characteristic of surface-ion imprinting material IIP-PEI/SiO2 of chromate anion, Sep. Sci. Technol. 46 (9) (2011) 1472-1481. [27] D. Kong, N. Wang, N. Qiao, Q. Wang, Z. Wang, Z. Zhou, Z. Ren, Facile preparation of ion-imprinted chitosan microspheres enwrapping Fe3O4 and graphene oxide by inverse suspension cross-linking for highly selective removal of copper(II), ACS Sustain. Chem. Eng. 5 (8) (2017) 7401-7409. [28] Y. Huang, R. Wang, Highly effective and low-cost ion-imprinted polymers loaded on pretreated vermiculite for lithium recovery, Ind. Eng. Chem. Res. 58 (27) (2019) 12216-12225. [29] Y.C. Zhan, X.B. Luo, S.S. Nie, Y.N. Huang, X.M. Tu, S.L. Luo, Selective separation of Cu(II) from aqueous solution with a novel Cu(II) surface magnetic ion-imprinted polymer, Ind. Eng. Chem. Res. 50 (10) (2011) 6355-6361. [30] M. Shamsipur, J. Fasihi, K. Ashtari, Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: A selective sorbent for uranyl ion, Anal. Chem. 79 (18) (2007) 7116-7123. [31] A. Islam, H. Javed, A. Chauhan, I. Ahmad, S. Rais, Triethylenetetramine-grafted magnetite graphene oxide-based surface-imprinted polymer for the adsorption of Ni(II) in food samples, J. Chem. Eng. Data 66 (1) (2021) 456-465. [32] L. Zhang, J. Xue, X. Zhou, X. Fei, Y. Wang, Y. Zhou, L. Zhong, X. Han, Adsorption of molybdate on molybdate-imprinted chitosan/triethanolamine gel beads, Carbohydr. Polym. 114 (2014) 514-520. [33] D.J. Li, Y. Chen, Z. Liu, Boronate affinity materials for separation and molecular recognition: Structure, properties and applications, Chem. Soc. Rev. 44 (22) (2015) 8097-8123. [34] E. Kanao, Y. Tsuchiya, K. Tanaka, Y. Masuda, T. Tanigawa, T. Naito, T. Sano, T. Kubo, K. Otsuka, Poly(ethylene glycol) hydrogels with a boronic acid monomer via molecular imprinting for selective removal of quinic acid gamma-lactone in coffee, ACS Appl. Polym. Mater. 3 (1) (2021) 226-232. [35] X.Y. Hou, B.L. Guo, Y.K. Tong, M.M. Tian, Using self-polymerization synthesis of boronate-affinity hollow stannic oxide based fragment template molecularly imprinted polymers for the selective recognition of polyphenols, J. Chromatogr. A 1612 (2020) 460631. [36] S. Liu, J. Liu, J. Pan, J. Luo, X. Niu, T. Zhang, F. Qiu, Two are better than one: Halloysite nanotubes-supported surface imprinted nanoparticles using synergy of metal chelating and low pKa boronic acid monomers for highly specific luteolin binding under neutral condition, ACS Appl. Mater. Interfaces 9 (38) (2017) 33191-33202. [37] Q. Wang, X.T. Liu, M.H. Zhang, Z. Wang, Z.Y. Zhou, Z.Q. Ren, Facile preparation of novel ion-imprinted polymers for selective extraction of Br(I) ions from aqueous solution, Ind. Eng. Chem. Res. 58 (16) (2019) 6670-6678. [38] H.J. Zhu, H. Yao, K. Xia, J. Liu, X. Yin, W. Zhang, J. Pan, Magnetic nanoparticles combining teamed boronate affinity and surface imprinting for efficient selective recognition of glycoproteins under physiological pH, Chem. Eng. J. 346 (2018) 317-328. [39] B.S. Zhao, M. He, B.B. Chen, B. Hu, Fe3O4 nanoparticles coated with double imprinted polymers for magnetic solid phase extraction of lead(II) from biological and environmental samples, Mikrochim. Acta 186 (12) (2019) 775. [40] H. Zhang, D. Fang, Z. Kong, J. Wei, X. Wu, S. Shen, W. Cui, Y. Zhu, Enhanced adsorption of phthalic acid esters (PAEs) from aqueous solution by alkylbenzene-functionalized polypropylene nonwoven and its adsorption mechanism insight, Chem. Eng. J. 331 (2018) 406-415. [41] X.Y. Zhou, J. Wei, H. Zhang, K. Liu, H. Wang, Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: The study of hydrophilic and hydrophobic microdomain, J. Hazard. Mater. 273 (2014) 61-69. [42] T. Qi, A. Sonoda, Y. Makita, H. Kanoh, K. Ooi, T. Hirotsu, Synthesis and borate uptake of two novel chelating resins, Ind. Eng. Chem. Res. 41 (2) (2002) 133-138. [43] Z.J. Zhao, H. Jiang, L. Wu, N. Yu, Z.W. Luo, W.H. Geng, Preparation of magnetic surface ion-imprinted polymer based on functionalized Fe3O4 for fast and selective adsorption of cobalt ions from water, Water 14 (2) (2022) 261. [44] J. Qian, S. Zhang, Y. Zhou, P. Dong, D.B. Hua, Synthesis of surface ion-imprinted magnetic microspheres by locating polymerization for rapid and selective separation of uranium(VI), RSC Adv. 5 (6) (2015) 4153-4161. [45] A. Sabarudin, K. Oshita, M. Oshima, S. Motomizu, Synthesis of cross-linked chitosan possessing N-methyl-d-glucamine moiety (CCTS-NMDG) for adsorption/concentration of boron in water samples and its accurate measurement by ICP-MS and ICP-AES, Talanta 66 (1) (2005) 136-144. [46] C.S. Xie, X. Huang, S. Wei, C. Xiao, J. Cao, Z. Wang, Novel dual-template magnetic ion imprinted polymer for separation and analysis of Cd2+ and Pb2+ in soil and food, J. Clean. Prod. 262 (2020) 121387. [47] N. Khoddami, F. Shemirani, A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples, Talanta 146 (2016) 244-252. [48] Z.Y. Zhou, X.T. Liu, M.H. Zhang, J. Jiao, H.W. Zhang, J. Du, B. Zhang, Z.Q. Ren, Preparation of highly efficient ion-imprinted polymers with Fe3O4 nanoparticles as carrier for removal of Cr(VI) from aqueous solution, Sci. Total Environ. 699 (2020) 134334. [49] H. Guo, Y. Tang, Y. Yu, L. Xue, J.Q. Qian, Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch, Int. J. Biol. Macromol. 87 (2016) 537-544. [50] G.Y. Liu, H. Wang, X. Yang, L. Li, Synthesis of tri-layer hybrid microspheres with magnetic core and functional polymer shell, Eur. Polym. J. 45 (7) (2009) 2023-2032. [51] F. Shafizadeh, M. Taghizadeh, S. Hassanpour, Preparation of a novel magnetic Pd(II) ion-imprinted polymer for the fast and selective adsorption of palladium ions from aqueous solutions, Environ. Sci. Pollut. Res. 26 (18) (2019) 18493-18508. [52] X.Y. Zheng, H.L. Zheng, R. Zhao, Y.J. Sun, Q. Sun, S.X. Zhang, Y.Z. Liu, Polymer-functionalized magnetic nanoparticles: Synthesis, characterization, and methylene blue adsorption, Materials 11 (8) (2018) 1312. [53] M. Fayazi, M.A. Taher, D. Afzali, A. Mostafavi, M. Ghanei-Motlagh, Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions, Mater. Sci. Eng. C 60 (2016) 365-373. [54] M.A. Al-Ghouti, S.S. Dib, Utilization of nano-olive stones in environmental remediation of methylene blue from water, J. Environ. Health Sci. Eng. 18 (1) (2020) 63-77. [55] B.Q. Lu, Y.J. Zhu, H.Y. Ao, C. Qi, F. Chen, Synthesis and characterization of magnetic iron oxide/calcium silicate mesoporous nanocomposites as a promising vehicle for drug delivery, ACS Appl. Mater. Interfaces 4 (12) (2012) 6969-6974. [56] S. Akbarnejad, A.A. Amooey, S. Ghasemi, High effective adsorption of acid fuchsin dye using magnetic biodegradable polymer-based nanocomposite from aqueous solutions, Microchem. J. 149 (2019) 103966. [57] S. Hassan, A.H. Kamel, A.A. Hassan, A. Amr, H. Abd El-Naby, M. Al-Omar, A. Sayed, CuFe2O4/polyaniline (PANI) nanocomposite for the hazard mercuric ion removal: Synthesis, characterization, and adsorption properties study, Molecules 25 (12) (2020) 2721. [58] L.Y. Wang, J. Li, J. Wang, X. Guo, X. Wang, J. Choo, L. Chen, Green multi-functional monomer based ion imprinted polymers for selective removal of copper ions from aqueous solution, J. Colloid Interface Sci. 541 (2019) 376-386. [59] T. Velempini, K. Pillay, X.Y. Mbianda, O.A. Arotiba, Carboxymethyl cellulose thiol-imprinted polymers: Synthesis, characterization and selective Hg(II) adsorption, J. Environ. Sci. (China) 79 (2019) 280-296. [60] S.I. Moussa, M.M.S. Ali, R.R. Sheha, The performance of activated carbon/NiFe2O4 magnetic composite to retain heavy metal ions from aqueous solution, Chin. J. Chem. Eng. 29 (2021) 135-145. [61] Y.A.B. Neolaka, Y. Lawa, J.N. Naat, A.A. Pau Riwu, H. Darmokoesoemo, G. Supriyanto, C.I. Holdsworth, A.N. Amenaghawon, H.S. Kusuma, A Cr(VI)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater, React. Funct. Polym. 147 (2020) 104451. [62] H. Hoshina, J.H. Chen, H. Amada, N. Seko, Chelating fabrics prepared by an organic solvent-free process for boron removal from water, Polymers 13 (7) (2021) 1163. [63] X. Li, R. Liu, S. Wu, J. Liu, S. Cai, D. Chen, Efficient removal of boron acid by N-methyl-d-glucamine functionalized silica-polyallylamine composites and its adsorption mechanism, J. Colloid Interface Sci. 361 (1) (2011) 232-237. [64] P. Fang, W. Xia, Y. Zhou, Z. Ai, W. Yin, M. Xia, J. Yu, R. Chi, Q. Yue, Ion-imprinted mesoporous silica/magnetic graphene oxide composites functionalized with Schiff-base for selective Cu(II) capture and simultaneously being transformed as a robust heterogeneous catalyst, Chem. Eng. J. 385 (2020) 123847. [65] A.M. Al’Abri, S. Mohamad, S.N. Abdul Halim, N.K. Abu Bakar, Development of magnetic porous coordination polymer adsorbent for the removal and preconcentration of Pb(II) from environmental water samples, Environ. Sci. Pollut. Res. 26 (11) (2019) 11410-11426. [66] G.Y. Abo El-Reesh, A.A. Farghali, M. Taha, R.K. Mahmoud, Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal, Sci. Rep. 10 (1) (2020) 587. [67] M. Li, J. Feng, K. Huang, S. Tang, R. Liu, H. Li, F. Ma, X. Meng, Amino group functionalized SiO2@graphene oxide for efficient removal of Cu(II) from aqueous solutions, Chem. Eng. Res. Des. 145 (2019) 235-244. [68] I.M. Kenawy, M.A. Ismail, M.A.H. Hafez, M.A. Hashem, Synthesis and characterization of novel ion-imprinted guanyl-modified cellulose for selective extraction of copper ions from geological and municipality sample, Int. J. Biol. Macromol. 115 (2018) 625-634. [69] O.B. Nchoe, M.J. Klink, F.M. Mtunzi, V.E. Pakade, Synthesis, characterization, and application of β-cyclodextrin-based ion-imprinted polymer for selective sequestration of Cr(VI) ions from aqueous media: Kinetics and isotherm studies, J. Mol. Liq. 298 (2020) 111991. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[4] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Chaoqun Wu, Xun Liu, Fujun Yao, Xin Yang, Yan Wang, Wenyuan Hu. Crystalline-magnetism action in biomimetic mineralization of calcium carbonate [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 146-152. |
[7] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[8] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[9] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[10] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[11] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[12] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[13] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[14] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
[15] | Hany M. Abd El-Lateef, Mai M. Khalaf, K. Shalabi, Antar A. Abdelhamid. Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 304-319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||