[1] X. Feng, L.Y. Jiang, Y. Song, Titanium white sulfuric acid concentration by direct contact membrane distillation, Chem. Eng. J. 285 (2016) 101-111. [2] I. Guillén, J. Marco, D. Gutierrez, W. Jakob, A. Jarabo, A general framework for pearlescent materials, ACM Trans. Graph. 39 (6) (2020) 1-15. [3] Y.C. Ryu, T.G. Kim, G.S. Seo, J.H. Park, C.S. Suh, S.S. Park, S.S. Hong, G. Dae Lee, Effect of substrate on the phase transformation of TiO2 in pearlescent pigment, J. Ind. Eng. Chem. 14 (2) (2008) 213-218. [4] M.R. Tohidifar, E. Taheri-Nassaj, P. Alizadeh, Precursor content assessment and its influence on the optical interference of a nano-sized mica-hematite pearlescent pigment, Powder Technol. 204 (2-3) (2010) 194-197. [5] H. Shiomi, E. Misaki, M. Adachi, F. Suzuki, High chroma pearlescent pigments designed by optical simulation, J Coat Technol Res 5 (4) (2008) 455-464. [6] Y.M. Chung, Modelling bed dimension for fluidized bed chemical vapour deposition, Chem. Eng. Sci. 245 (2021) 116937. [7] M.L. Liu, Z. Chen, M. Chen, Y.L. Shao, B. Liu, Y.P. Tang, Scale-up strategy study of coating furnace for TRISO particle fabrication based on numerical simulations, Nucl. Eng. Des. 357 (2020) 110413. [8] M. Xia, Z. Zhou, Y.F. Su, Y.R. Li, Y.F. Wu, N. Zhou, H.B. Zhang, X. Xiong, Scalable synthesis[email protected]anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery, Appl. Surf. Sci. 467-468 (2019) 298-308. [9] K. Minato, T.Ogawa, Advanced concepts in TRISO fuel. Comprehensive Nuclear Materials. Amsterdam: Elsevier, 2020: 334-360. [10] M.L. Liu, R.Z. Liu, B. Liu, Y.L. Shao, Preparation of the coated nuclear fuel particle using the fluidized bed-chemical vapor deposition (FB-CVD) method, Procedia Eng. 102 (2015) 1890-1895. [11] R.Z. Liu, M.L. Liu, J.X. Chang, Y.L. Shao, B. Liu, An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition, J. Nucl. Mater. 467 (2015) 917-926. [12] E. López-Honorato, P.J. Meadows, P. Xiao, Fluidized bed chemical vapor deposition of pyrolytic carbon - I. Effect of deposition conditions on microstructure, Carbon 47 (2) (2009) 396-410. [13] J.L. Li, G.H. Chen, P. Zhang, W.W. Wang, J.H. Duan, Technical challenges and progress in fluidized bed chemical vapor deposition of polysilicon, Chin. J. Chem. Eng. 19 (5) (2011) 747-753. [14] S.S. Liu, H. Li, W.D. Xiao, Sintering effect on crystallite size, hydrogen bond structure and morphology of the silane-derived silicon powders, Powder Technol. 273 (2015) 40-46. [15] P. Zhang, J.H. Duan, G.H. Chen, J.L. Li, W.W. Wang, Production of polycrystalline silicon from silane pyrolysis: A review of fines formation, Sol. Energy 175 (2018) 44-53. [16] C.J. Wang, T.F. Wang, Z.W.Wang, Manufacture of granular polysilicon from trichlorosilane in a fluidized-bed reactor, Chem. Eng. Technol. 35 (5) (2012) 893-898. [17] J. Zhao, M.L. Liu, J.X. Chang, Y.L. Shao, B. Liu, R.Z.Liu, Controllable synthesis of SiC@Graphene core-shell nanoparticles via fluidized bed chemical vapor deposition, J. Am. Ceram. Soc. 103 (10) (2020) 5579-5585. [18] S.A. Sarbarze, M. Latifi, P. Sauriol, J.Chaouki, Gas-phase carbon coating of LiFePO4 nanoparticles in fluidized bed reactor, Can. J. Chem. Eng. 97 (8) (2019) 2259-2272. [19] C. Liu, Y.F. Yang, P.P. Lv, J.J. Guo, M.Q. Xiang, Q.S.Zhu, Fabrication of core-shell structured TiC-Fe composite powders by fluidized bed chemical vapor deposition, J. Am. Ceram. Soc. 102 (8) (2019) 4470-4479. [20] S.B. Abu Suilik, D. Shimamoto, H. Kitagawa, K. Hasezaki, Y. Noda, Experimental study of nucleation and quality of CVD diamond adopting two-step deposition approach using MPECVD, Diam. Relat. Mater. 15 (10) (2006) 1765-1772. [21] P. Falaras, A.P. Xagas, Roughness and fractality of nanostructured TiO2 films prepared via Sol-gel technique, J. Mater. Sci. 37 (18) (2002) 3855-3860. [22] I. Oja Acik, A. Junolainen, V. Mikli, M. Danilson, M. Krunks, Growth of ultra-thin TiO2 films by spray pyrolysis on different substrates, Appl. Surf. Sci. 256 (5) (2009) 1391-1394. [23] N. Li, Z. Zhen, R.J. Zhang, R.D. Mu, Z.H. Xu, L.M. He, The nucleation and growth of graphene under a controlled atmosphere during radio frequency-plasma-enhanced chemical vapor deposition, Vacuum 196 (2022) 110750. [24] M.C. Chuang, W.Y. Woon, Nucleation and growth dynamics of graphene on oxygen exposed copper substrate, Carbon 103 (2016) 384-390. [25] M. Vazquez-Pufleau, M. Yamane, WITHDRAWN: Relative kinetics of nucleation and condensation of silane pyrolysis in a helium atmosphere provide mechanistic insight in the initial stages of particle formation and growth, Chem. Eng. Sci. X (2019) 100036. [26] H.J. Xu, J.S. Mi, Y. Li, B. Zhang, R.D. Cong, G.S. Fu, W.Yu, Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition, Chin. Phys. B 26 (12) (2017) 128102. [27] E. Lee, J. Baek, J.S. Park, J. Kim, J.M. Yuk, S.Jeon, Effect of nucleation density on the crystallinity of graphene grown from mobile hot-wire-assisted CVD, 2D Mater. 6 (1) (2018) 011001. [28] Y.F. Hao, M.S. Bharathi, L. Wang, Y.Y. Liu, H. Chen, S. Nie, X.H. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y.W. Zhang, P. Kim, J. Hone, L. Colombo, R.S.Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper, Science 342 (6159) (2013) 720-723. [29] H.T. Xu, W.P. Zhou, X.W. Zheng, J.Y. Huang, X.L. Feng, L. Ye, G.J. Xu, F. Lin, Control of the nucleation density of molybdenum disulfide in large-scale synthesis using chemical vapor deposition, Materials (Basel) 11 (6) (2018) 870. [30] P.H.Q. Pham, W.W. Zhou, N.V. Quach, J.F. Li, J.G. Zheng, P.J.Burke, Controlling nucleation density while simultaneously promoting edge growth using oxygen-assisted fast synthesis of isolated large-domain graphene, Chem. Mater. 28 (18) (2016) 6511-6519. [31] S.Y. Wang, G. Wang, X. Yang, H. Yang, M.J. Zhu, S. Zhang, G. Peng, Z. Li, Synthesis of monolayer MoSe2 with controlled nucleation via reverse-flow chemical vapor deposition, Nanomaterials (Basel) 10 (1) (2019) 75. [32] I. Jelovica Badovinac, R. Peter, A. Omerzu, K. Salamon, I. Šarić, A. Samaržija, M. Perčić, I. Kavre Piltaver, G. Ambrožić, M. Petravić, Grain size effect on photocatalytic activity of TiO2 thin films grown by atomic layer deposition, Thin Solid Films 709 (2020) 138215. [33] Z.G. Sun, X.S. Li, X.B. Zhu, X.Q. Deng, D.L. Chang, A.M.Zhu, Facile and fast deposition of amorphous TiO2Film under atmospheric pressure and at room temperature, and its high photocatalytic activity under UV-C light, Chem. Vap. Deposition 20 (1-3) (2014) 8-13. [34] Y. Xu, Y. Zhang, L.J. Li, K. Ding, Y. Guo, J.J. Shi, X.J. Huang, J. Zhang, Synergistic effect of plasma discharge and substrate temperature in improving the crystallization of \(\hbox{TiO}2\) film by atmospheric pressure plasma enhanced chemical vapor deposition, Plasma Chem Plasma Process 39 (4) (2019) 937-947. [35] I. Djerdj, A.M. Tonejc, M. Bijelić, V. Vranes?a, A. Turković, Transmission electron microscopy studies of nanostructured TiO2 films on various substrates, Vacuum 80 (4) (2005) 371-378. [36] C. Armstrong, L.V. Delumeau, D. Muñoz-Rojas, A. Kursumovic, J. MacManus-Driscoll, K.P. Musselman, Tuning the band gap and carrier concentration of titania films grown by spatial atomic layer deposition: A precursor comparison, Nanoscale Adv. 3 (20) (2021) 5908-5918. [37] X. Luo, S. Wu, Y.Q. Yang, N. Jin, S. Liu, B. Huang, Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition, Mater. Chem. Phys. 184 (2016) 189-196. [38] B. Wang, P. Sukkaew, G.C. Song, A. Rosenkranz, Y.X. Lu, K. Nishimura, J. Wang, J.L. Lyu, Y. Cao, J. Yi, L. Ojamäe, H. Li, N. Jiang, Unprecedented differences in the diamond nucleation density between carbon- and silicon-faces of 4H-silicon carbides, Chin. Chem. Lett. 31 (7) (2020) 2013-2018. [39] M. Elikbilek, A. Erin, S.Ayd, Crystallization kinetics of amorphous materials. Advances in Crystallization Processes, InTech, 2012, https://www.intechopen.com/chapters/36355. |