[1] Z.H. Liu, J.B. Su, A.J. Ma, A.X. Zhu, P.Y.Liu, Study on emission characteristics of tracer pollutants in cooking oil fumes, Atmos. Pollut. Res. 13 (5) (2022) 101409. [2] B.A.M. Bandowe, K.H. Lui, T. Jones, K. BéruBé, R. Adams, X.Y. Niu, C. Wei, J.J. Cao, S.C. Lee, H.C. Chuang, K.F.Ho, The chemical composition and toxicological effects of fine particulate matter (PM2.5) emitted from different cooking styles, Environ. Pollut. 288 (2021) 117754. [3] L.N. Wang, X.R. Zheng, S. Stevanovic, X. Wu, Z.Y. Xiang, M.Z. Yu, J.Liu, Characterization particulate matter from several Chinese cooking dishes and implications in health effects, J. Environ. Sci. 72 (2018) 98–106. [4] X. Huang, D. Han, J. Cheng, X. Chen, Y. Zhou, H. Liao, W. Dong, C. Yuan, Characteristics and health risk assessment of volatile organic compounds (VOCs) in restaurants in Shanghai. Environ Sci Pollut Res. 27 (2020) 490–499. [5] Z.H. Zhou, Q.W. Tan, Y. Deng, D.L. Song, K.Y. Wu, X.L. Zhou, F.X. Huang, W.H. Zeng, C.W.Lu, Compilation of emission inventory and source profile database for volatile organic compounds: a case study for Sichuan, China, Atmos. Pollut. Res. 11 (1) (2020) 105–116. [6] Lei, Huang, The exposures and health effects of benzene, toluene and naphthalene for Chinese chefs in multiple cooking styles of kitchens, Environ. Int. 156 (2021) 106721. [7] L. Karimatu, Abdullahi, Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review, Atmos. Environ. 71 (2013) 260–294. [8] Yu, Huang, Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong, J. Hazard. Mater. 186 (1) (2011) 344–351. [9] Y. Zhao, S.X. Wang, K. Aunan, H.M. Seip, J.M. Hao, Air pollution and lung cancer risks in China: a meta-analysis, Sci. Total Environ. 366 (2–3) (2006) 500–513. [10] Z.J. Du, J.H. Mo, Y.P. Zhang, Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China, Environ Int 73 (2014) 33–45. [11] X.-R, Wang, The roles of smoking and cooking emissions in lung cancer risk among Chinese women in Hong Kong, Ann. Oncol. 20 (4) (2009) 746–751. [12] L. Li, Y. Cheng, X. Du, Q. Dai, J. Wu, X. Bi, Y. Feng. Chemical composition spectra of PM2.5 emitted from six food and beverage sources. Res. Environ. Sci. 34 (2021) 71–78. [13] N. Gysel, W.A. Welch, C.L. Chen, P. Dixit, G. Karavalakis, Particulate matter emissions and gaseous air toxic pollutants from commercial meat cooking operations, J. Environ. Sci. 65 (2018) (3)162–170. [14] Y. Zhang, Q. Yu, X. Tang, S. Zhao, F. Gao, Y. Yuan, J. Zhang, J. Wei, H. Yi. Reduction of non-methane hydrocarbons in cooking oil fumes via adsorption on MFI: Effect of zeolitic framework composition,Separation and Purification Technology, 300 (2022) 121687. [15] W.P. Hu, J. Ye, X.Y. Chen, G.Y. Wang, S. Li, H. Wang, H. Li, H.P. Zhang, Dining lampblack treatment processes in China, Processes, 9 (2021) 2241. [16] X. Zhang, Z. Q. Qian, D.F. Zhang, T. Zhu, Q.C. Yuan, Z.F. Ye. Research progress of cooking fume emission characteristics and purification technologies. Environ. Eng. 38 (2020) 37–61. [17] Y. Cheng, H.J. He, C.P. Yang, G.M. Zeng, X. Li, H. Chen, G.L. Yu, Challenges and solutions for biofiltration of hydrophobic volatile organic compounds, Biotechnol. Adv. 34 (6) (2016) 1091–1102. [18] F. Heymes, P. Manno-Demoustier, F. Charbit, J.L. Fanlo, P. Moulin, A new efficient absorption liquid to treat exhaust air loaded with toluene, Chem. Eng. J. 115 (3) (2005) 225–231. [19] F. Fahri, K. Bacha, F.F. Chiki, J.P. Mbakidi, S. Panda, S. Bouquillon, S. Fourmentin, Air pollution: new bio-based ionic liquids absorb both hydrophobic and hydrophilic volatile organic compounds with high efficiency, Environ. Chem. Lett.18 (4) (2020) 1403–1411. [20] L. Moura, T. Moufawad, M. Ferreira, H. Bricout, S. Tilloy, E. Monflier, M.F. Costa Gomes, D. Landy, S. Fourmentin, Deep eutectic solvents as green absorbents of volatile organic pollutants, Environ. Chem. Lett.15 (4) (2017) 747–753. [21] C. Florindo, L. Romero, I. Rintoul, L. Branco, I. Marrucho, From phase change materials to green solvents: hydrophobic low viscous fatty acid-based deep eutectic solvents, ACS Sustain. Chem. \& Eng. 6 (2018) 3888–3895. [22] C. Florindo, L. Romero, I. Rintoul, L. C. Branco, I. Marrucho. M. From phase change materials to green solvents: hydrophobic low viscous fatty acid-based deep eutectic solvents. ACS Sustainable Chem. Eng. 6 (2018) 3888-3895. [23] T.Y. Chung, J.P. Eiserich, T. Shibamoto, Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50 to 200℃, J. Agric. Food Chem. 41 (9) (1993) 1467–1470. [24] S.Y. Cheng, G. Wang, J.L. Lang, W. Wen, X.Q. Wang, S. Yao, Characterization of volatile organic compounds from different cooking emissions, Atmos. Environ. 145 (2016) 299–307. [25] C.P. Tan, Y.B.Che Man, Differential scanning calorimetric analysis of edible oils: comparison of thermal properties and chemical composition, J. Am. Oil Chem. Soc. 77 (2) (2000) 143–155. [26] K.M. Chiang, L.L. Xiu, C.Y. Peng, S.C C. Lung, Y.C. Chen, W.H.Pan, Particulate matters, aldehydes, and polycyclic aromatic hydrocarbons produced from deep-frying emissions: comparisons of three cooking oils with distinct fatty acid profiles, Npj Sci. Food 6 (2022) 28. [27] Y.L. Ma, Characterization of non-methane hydrocarbons emitted from Chinese cooking, Acta Scientiae Circumstantiae. 8 (2011) 1768-1775. [28] J. Cao, L. Deng, X.M. Zhu, Y.W. Fan, J.N. Hu, J. Li, Z.Y.Deng, Novel approach to evaluate the oxidation state of vegetable oils using characteristic oxidation indicators, J. Agric. Food Chem. 62 (52) (2014) 12545–12552. [29] M.D. Vuong, A. Couvert, C. Couriol, A. Amrane, P. Le Cloirec, C.Renner, Determination of the Henry’s constant and the mass transfer rate of VOCs in solvents, Chem. Eng. J. 150 (2–3) (2009) 426–430. [30] R. Hadjoudj, H. Monnier, C. Roizard, F.Lapicque, Absorption of chlorinated VOCs in high-boiling solvents: determination of henry’s law constants and infinite dilution activity coefficients, Ind. Eng. Chem. Res. 43 (9) (2004) 2238–2246. |