[1] M. Eloussaief, N. Kallel, A. Yaacoubi, M. Benzina, Mineralogical identification, spectroscopic characterization, and potential environmental use of natural clay materials on chromate removal from aqueous solutions, Chem. Eng. J. 168 (3) (2011) 1024–1031. [2] Y.X. Zhao, S.J. Yang, D.H. Ding, J. Chen, Y.N. Yang, Z.F. Lei, C.P. Feng, Z.Y. Zhang, Effective adsorption of Cr(VI) from aqueous solution using natural Akadama clay, J. Colloid Interface Sci. 395 (2013) 198–204. [3] F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manag. 92 (3) (2011) 407–418. [4] E. Alemayehu, S. Thiele-Bruhn, B. Lennartz, Adsorption behaviour of Cr(VI) onto macro and micro-vesicular volcanic rocks from water, Sep. Purif. Technol. 78 (1) (2011) 55–61. [5] Y. Zeng, H. Woo, G. Lee, J. Park, Removal of chromate from water using surfactant modified Pohang clinoptilolite and Haruna chabazite, Desalination 257 (1–3) (2010) 102–109. [6] V.K. Gupta, A. Rastogi, A. Nayak, Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material, J. Colloid Interface Sci. 342 (1) (2010) 135–141. [7] D. Gusain, V. Srivastava, M. Sillanpää, Y.C. Sharma, Kinetics and isotherm study on adsorption of chromium on nano crystalline iron oxide/hydroxide: Linear and nonlinear analysis of isotherm and kinetic parameters, Res. Chem. Intermed. 42 (9) (2016) 7133–7151. [8] G.F. Wang, Y.Y. Hua, X. Su, S. Komarneni, S.J. Ma, Y.J. Wang, Cr(VI) adsorption by montmorillonite nanocomposites, Appl. Clay Sci. 124-125 (2016) 111–118. [9] K. Li, P. Li, J. Cai, S. Xiao, H. Yang, A. Li, Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent, Chemosphere 154 (2016) 310–318. [10] M. Bhaumik, A. Maity, V.V. Srinivasui, M.S. Onyago, Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite, J. Hazard. Mater. 190 (1–3) (2011) 381–390. [11] Y.C. Sharma, C.H. Weng, Removal of chromium(VI) from water and wastewater by using riverbed sand: Kinetic and equilibrium studies, J. Hazard. Mater. 142 (1–2) (2007) 449–454. [12] M. Bansal, D. Singh, V.K. Garg, A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons, J. Hazard. Mater. 171 (1–3) (2009) 83–92. [13] F. Venditti, A. Ceglie, G. Palazzo, G. Colafemmina, F. Lopez, Removal of chromate from water by a new CTAB–silica gelatin composite, J. Colloid Interface Sci. 310 (2) (2007) 353–361. [14] V. Campos, L.C. Morais, P.M. Buchler, Removal of chromate from aqueous solution using treated natural zeolite, Environ. Geol. 52 (8) (2007) 1521–1525. [15] M. Jain, V.K. Garg, K. Kadirvelu, Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass, J. Environ. Manag. 91 (4) (2010) 949–957. [16] H.L. Hong, W.T. Jiang, X.L. Zhang, L.Y. Tie, Z.H.Li, Adsorption of Cr(VI) on STAC-modified rectorite, Appl. Clay Sci. 42 (1–2) (2008) 292–299. [17] Y. Wu, X. Ma, M. Feng, M. Liu, Behavior of chromium and arsenic on activated carbon, J. Hazard. Mater. 159 (2–3) (2008) 380–384. [18] C.H. Weng, Y.C. Sharma, S. Chu, Adsorption of Cr(VI) from aqueous solutions by spent activated clay, J. Hazard. Mater. 155 (1–2) (2008) 65–75. [19] B.S. Krishna, D.S.R. Murty, B.S. Jai Prakash, Surfactant-modified clay as adsorbent for chromate, Appl. Clay Sci. 20 (1–2) (2001) 65–71. [20] Z.C. Li, L. Sellaoui, G.L. Dotto, A. Ben Lamine, A. Bonilla-Petriciolet, H. Hanafy, H. Belmabrouk, M.S. Netto, A. Erto, Interpretation of the adsorption mechanism of Reactive Black 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers via advanced statistical physics model, J. Mol. Liq. 285 (2019) 165–170. [21] E.A. Mohamed, A.Q. Selim, S.A. Ahmed, L. Sellaoui, A. Bonilla-Petriciolet, A. Erto, Z.C. Li, Y.H. Li, M.K. Seliem, H2O2-activated anthracite impregnated with chitosan as a novel composite for Cr(VI) and methyl orange adsorption in single-compound and binary systems: Modeling and mechanism interpretation, Chem. Eng. J. 380 (2020) 122445. [22] Z.C. Li, H. Hanafy, L. Zhang, L. Sellaoui, M. Schadeck Netto, M.L.S. Oliveira, M.K. Seliem, G. Luiz Dotto, A. Bonilla-Petriciolet, Q. Li, Adsorption of Congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations, Chem. Eng. J. 388 (2020) 124263. [23] H.S. Ramadan, M. Mobarak, E.C. Lima, A. Bonilla-Petriciolet, Z.C. Li, M.K. Seliem, Cr(VI) adsorption onto a new composite prepared from Meidum black clay and pomegranate peel extract: Experiments and physicochemical interpretations, J. Environ. Chem. Eng. 9 (4) (2021) 105352. [24] A.S.A.A. Abu Sharib, A. Bonilla-Petriciolet, A.Q. Selim, E.A. Mohamed, M.K. Seliem, Utilizing modified weathered basalt as a novel approach in the preparation of Fe3O4 nanoparticles: Experimental and theoretical studies for crystal violet adsorption, J. Environ. Chem. Eng. 9 (6) (2021) 106220. [25] A. Supong, P.C. Bhomick, R. Karmaker, S.L. Ezung, L. Jamir, U.B. Sinha, D. Sinha, Experimental and theoretical insight into the adsorption of phenol and 2,4-dinitrophenol onto Tithonia diversifolia activated carbon, Appl. Surf. Sci. 529 (2020) 147046. [26] J.C. Diel, K. da Boit Martinello, C.L. da Silveira, H.A. Pereira, D.S.P. Franco, L.F.O. Silva, G.L. Dotto, New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: Statistical physical modeling and steric and energetic interpretations, Chem. Eng. J. 431 (2022) 134095. [27] A. Gautam, S. Rawat, L. Verma, J. Singh, S. Sikarwar, B.C. Yadav, A.S. Kalamdhad, Green synthesis of iron nanoparticle from extract of waste tea: An application for phenol red removal from aqueous solution, Environ. Nanotechnol. Monit. Manag. 10 (2018) 377–387. [28] Y. Rashtbari, F. Sher, S. Afshin, A. Hamzezadeh, S. Ahmadi, O. Azhar, A. Rastegar, S. Ghosh, Y. Poureshgh, Green synthesis of zero-valent iron nanoparticles and loading effect on activated carbon for furfural adsorption, Chemosphere 287 (Pt 1) (2022) 132114. [29] M.M.M. Ewais, M.A. El Zalaky, A.Q. Selim, A.S.A.A. Abu Sharib, Implementation of ASTER data for lithologic and alteration zones mapping: Derhib area, South Eastern Desert, Egypt, J. Afr. Earth Sci. 196 (2022) 104725. [30] M.K. Seliem, M. Mobarak, Cr(VI) uptake by a new adsorbent of CTAB-modified carbonized coal: Experimental and advanced statistical physics studies, J. Mol. Liq. 294 (2019) 111676. [31] I. Langmuir, The constitution and fundamental properties of solids and liquids, Part I, Solids, J. Am. Chem. Soc. 38 (11) (1916) 2221–2295. [32] H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385–471. [33] M.A.E. Barakat, R. Kumar, M.K. Seliem, A.Q. Selim, M. Mobarak, I. Anastopoulos, D. Giannakoudakis, M. Barczak, A. Bonilla-Petriciolet, E.A. Mohamed, Exfoliated clay decorated with magnetic iron nanoparticles for crystal violet adsorption: Modeling and physicochemical interpretation, Nanomaterials 10 (8) (2020) 1454. [34] P. L. Hariani, M. Faizal, D. Setiabudidaya, Removal of Procion Red MX-5B from songket’s industrial wastewater in South Sumatra Indonesia using activated carbon-Fe3O4 composite, Sustain. Environ. Res. 28 (4) (2018) 158–164. [35] S.M. Yakout, G. Sharaf El-Deen, Characterization of activated carbon prepared by phosphoric acid activation of olive stones, Arab. J. Chem. 9 (2016) S1155–S1162. [36] L.X. Wang, J. Geng, W.H. Wang, C. Yuan, L. Kuai, B.Y. Geng, Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction, Nano Res. 8 (12) (2015) 3815–3822. [37] A.A. Nayl, A.I. Abd-Elhamid, I.M. Ahmed, S. Bräse, Preparation and characterization of magnetite talc (Fe3O4@Talc) nanocomposite as an effective adsorbent for Cr(VI) and alizarin red S dye, Materials 15 (9) (2022) 3401. [38] M. Mobarak, A.Q. Selim, E.A. Mohamed, M.K. Seliem, A superior adsorbent of CTAB/H2O2 solution-modified organic carbon rich-clay for hexavalent chromium and methyl orange uptake from solutions, J. Mol. Liq. 259 (2018) 384–397. [39] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A. Ben Lamine, Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon, Fluid Phase Equilibria 387 (2015) 103–110. [40] M. Mobarak, E.A. Mohamed, A.Q. Selim, F.M. Mohamed, L. Sellaoui, A. Bonilla-Petriciolet, M.K. Seliem, Statistical physics modeling and interpretation of methyl orange adsorption on high-order mesoporous composite of MCM-48 silica with treated rice husk, J. Mol. Liq. 285 (2019) 678–687. |