[1] C. Tebaldi, R. Ranasinghe, M. Vousdoukas, D.J. Rasmussen, B. Vega-Westhoff, E. Kirezci, R.E. Kopp, R. Sriver, L. Mentaschi, Extreme sea levels at different global warming levels, Nat. Clim. Change 11 (9) (2021) 746–751. [2] D. Tong, Q. Zhang, Y.X. Zheng, K. Caldeira, C. Shearer, C.P. Hong, Y. Qin, S.J. Davis, Committed emissions from existing energy infrastructure jeopardize 1.5 ℃ climate target, Nature 572 (7769) (2019) 373–377. [3] M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, N. Mac Dowell, Carbon capture and storage (CCS): The way forward, Energy Environ. Sci. 11 (5) (2018) 1062–1176. [4] A.H. Farmahini, S. Krishnamurthy, D. Friedrich, S. Brandani, L.Sarkisov, Performance-based screening of porous materials for carbon capture, Chem. Rev. 121 (17) (2021) 10666–10741. [5] Y.F. Zeng, R.Q. Zou, Y.L. Zhao, Covalent organic frameworks for CO2 capture, Adv. Mater. 28 (15) (2016) 2855–2873. [6] M. Ding, X. Liu, P. Ma, J. Yao, Porous materials for capture and catalytic conversion of CO2 at low concentration, Coord. Chem. Rev. 465 (2022) 214576. [7] M.L. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chem. Soc. Rev. 48 (10) (2019) 2783–2828. [8] Y.J. Wan, Y.F. Miao, T.J. Qiu, D.K. Kong, Y.X. Wu, Q.N. Zhang, J.M. Shi, R.Q. Zhong, R.Q. Zou, Tailoring amine-functionalized Ti-MOFs via a mixed ligands strategy for high-efficiency CO2 capture, Nanomaterials 11 (12) (2021) 3348. [9] Y.C. Lin, C.L. Kong, Q.J. Zhang, L. Chen, Metal–organic frameworks for carbon dioxide capture and methane storage, Adv. Energy Mater. 7 (4) (2017) 1601296. [10] R.Q. Zhong, X.F. Yu, W. Meng, J. Liu, C.X. Zhi, R.Q.Zou, Amine-grafted MIL-101(Cr) via double-solvent incorporation for synergistic enhancement of CO2 uptake and selectivity, ACS Sustain. Chem. Eng. 6 (12) (2018) 16493–16502. [11] R.Q. Zhong, X.F. Yu, W. Meng, S.B. Han, J. Liu, Y.X. Ye, C.Y. Sun, G.J. Chen, R.Q. Zou, A solvent ‘squeezing’ strategy to graft ethylenediamine on Cu3(BTC)2 for highly efficient CO2/CO separation, Chem. Eng. Sci. 184 (2018) 85–92. [12] Y.J. Wan, Y.F. Miao, R.Q. Zhong, R.Q. Zou, High-selective CO2 capture in amine-decorated Al-MOFs, Nanomaterials 12 (22) (2022) 4056. [13] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks, Science 341 (6149) (2013) 1230444. [14] J.M. Kolle, M. Fayaz, A. Sayari, Understanding the effect of water on CO2 adsorption, Chem. Rev. 121 (13) (2021) 7280–7345. [15] S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores, J. Am. Chem. Soc. 130 (33) (2008) 10870–10871. [16] J. Wang, S. Cui, Z. Li, S. Wen, P. Ning, S. Lu, P. Lu, L. Huang, Q. Wang, Comprehensive investigation of dynamic CO2 capture performance using Mg/DOBDC as precursor to fabricate a composite of metallic organic framework and graphene oxide, Chem. Eng. J. 415 (2021) 128859. [17] D.A. Yang, H.Y. Cho, J. Kim, S.T. Yang, W.S. Ahn, CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method, Energy Environ. Sci. 5 (4) (2012) 6465–6473. [18] A.C. Kizzie, A.G. Wong-Foy, A.J. Matzger, Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture, Langmuir 27 (10) (2011) 6368–6373. [19] R.P. Paitandi, Y.J. Wan, W. Aftab, R.Q. Zhong, R.Q. Zou, Pristine metal–organic frameworks and their composites for renewable hydrogen energy applications, Adv. Funct. Mater. 33 (8) (2023) 2203224. [20] T.J. Qiu, Z.B. Liang, W.H. Guo, H. Tabassum, S. Gao, R.Q. Zou, Metal–organic framework-based materials for energy conversion and storage, ACS Energy Lett. 5 (2) (2020) 520–532. [21] L. Chen, Q. Xu, Metal–organic framework composites for catalysis, Matter 1 (1) (2019) 57–89. [22] A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez, J. Gascon, Metal–organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives, Chem. Rev. 120 (16) (2020) 8468–8535. [23] G.D. Li, S.L. Zhao, Y. Zhang, Z.Y. Tang, Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives, Adv. Mater. 30 (51) (2018) e1800702. [24] F.P. Kinik, A. Uzun, S. Keskin, Ionic liquid/metal–organic framework composites: From synthesis to applications, ChemSusChem 10 (14) (2017) 2842–2863. [25] M.M. Jin, Y.X. Li, C. Gu, X.Q. Liu, L.B. Sun, Tailoring microenvironment of adsorbents to achieve excellent CO2 uptakes from wet gases, AIChE J. 66 (11) (2020) e16645. [26] Y.Y. Gong, Y. Yuan, C. Chen, P. Zhang, J.C. Wang, A. Khan, S. Zhuiykov, S. Chaemchuen, F. Verpoort, Enhancing catalytic performance via structure core–shell metal–organic frameworks, J. Catal. 375 (2019) 371–379. [27] Z.N. Song, F. Qiu, E.W. Zaia, Z.Y. Wang, M. Kunz, J.H. Guo, M. Brady, B.X. Mi, J.J. Urban, Dual-channel, molecular-sieving core/shell ZIF@MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation, Nano Lett. 17 (11) (2017) 6752–6758. [28] D. Mutruc, A. Goulet-Hanssens, S. Fairman, S. Wahl, A. Zimathies, C. Knie, S. Hecht, Modulating guest uptake in core–shell MOFs with visible light, Angew. Chem. Int. Ed. 58 (37) (2019) 12862–12867. [29] L. Zhang, J. Wang, X.Y. Ren, W.T. Zhang, T.S. Zhang, X.N. Liu, T. Du, T. Li, J.L. Wang, Internally extended growth of core–shell NH2-MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(ii), J. Mater. Chem. A 6 (42) (2018) 21029–21038. [30] S. Kim, J. Lee, S. Jeoung, H.R. Moon, M.Kim, Surface-deactivated core–shell metal–organic framework by simple ligand exchange for enhanced size discrimination in aerobic oxidation of alcohols, Chem. Eur. J. 26 (34) (2020) 7568–7572. [31] J.W. Ren, N.M. Musyoka, H.W. Langmi, B.C. North, M. Mathe, X.D. Kang, Fabrication of core–shell MIL-101(Cr)@UiO-66(Zr) nanocrystals for hydrogen storage, Int. J. Hydrog. Energy 39 (27) (2014) 14912–14917. [32] K. Rui, G.Q. Zhao, Y.P. Chen, Y. Lin, Q. Zhou, J.Y. Chen, J.X. Zhu, W.P. Sun, W. Huang, S.X.Dou, Hybrid 2D dual-metal–organic frameworks for enhanced water oxidation catalysis, Adv. Funct. Mater. 28 (26) (2018) 1801554. [33] C.E. Zhao, Z.Y. Qiu, J.K. Yang, Z.D. Huang, X.Y. Shen, Y. Li, Y.W. Ma, Metal–organic frameworks-derived core/shell porous carbon materials interconnected by reduced graphene oxide as effective cathode catalysts for microbial fuel cells, ACS Sustain. Chem. Eng. 8 (37) (2020) 13964–13972. [34] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS 103 (27) (2006) 10186–10191. [35] A.J. Howarth, Y.Y. Liu, P. Li, Z.Y. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nat. Rev. Mater. 1 (2016) 15018. [36] H. Liu, B. Liu, L.C. Lin, G.J. Chen, Y.Q. Wu, J. Wang, X.T. Gao, Y.N. Lv, Y. Pan, X.X. Zhang, X.R. Zhang, L.Y. Yang, C.Y. Sun, B. Smit, W.C. Wang, A hybrid absorption–adsorption method to efficiently capture carbon, Nat. Commun. 5 (2014) 5147. [37] R.Q. Zhong, J. Liu, X. Huang, X.F. Yu, C.Y. Sun, G.J. Chen, R.Q. Zou, Experimental and theoretical investigation of a stable zinc-based metal–organic framework for CO2 removal from syngas, CrystEngComm 17 (43) (2015) 8221–8225. [38] A.N. Wang, Q. Peng, Y.D.Li, Rod-shaped Au–Pd core–shell nanostructures, Chem. Mater. 23 (13) (2011) 3217–3222. [39] A. Jomekian, R.M. Behbahani, T. Mohammadi, A. Kargari, Innovative layer by layer and continuous growth methods for synthesis of ZIF-8 membrane on porous polymeric support using poly(ether-block-amide) as structure directing agent for gas separation, Microporous Mesoporous Mater. 234 (2016) 43–54. [40] F. Gao, Y.K. Li, Z.J. Bian, J. Hu, H.L. Liu, Dynamic hydrophobic hindrance effect of zeolite@zeolitic imidazolate framework composites for CO2 capture in the presence of water, J. Mater. Chem. A 3 (15) (2015) 8091–8097. [41] N. Chanut, S. Bourrelly, B. Kuchta, C. Serre, J.S. Chang, P.A. Wright, P.L. Llewellyn, Screening the effect of water vapour on gas adsorption performance: Application to CO2 capture from flue gas in metal–organic frameworks, ChemSusChem 10 (7) (2017) 1543–1553. [42] M. G. Plaza, A.S. González, F. Rubiera, C. Pevida, Water vapour adsorption by a coffee-based microporous carbon: Effect on CO2 capture, J. Chem. Technol. Biotechnol. 90 (9) (2015) 1592–1600. [43] I. Durán, F. Rubiera, C. Pevida, Separation of CO2 in a solid waste management incineration facility using activated carbon derived from pine sawdust, Energies 10 (6) (2017) 827. [44] F. Yang, J.Y. Wu, X.C. Zhu, T.S. Ge, R.Z. Wang, Enhanced stability and hydrophobicity of LiX@ZIF-8 composite synthesized environmental friendly for CO2 capture in highly humid flue gas, Chem. Eng. J. 410 (2021) 128322. [45] A. Kumar, D.G. Madden, M. Lusi, K.J. Chen, E.A. Daniels, T. Curtin, J.J. Perry IV, M.J. Zaworotko, Direct air capture of CO2 by physisorbent materials, Angew. Chem. Int. Ed. 54 (48) (2015) 14372–14377. [46] S.J. Datta, C. Khumnoon, Z.H. Lee, W.K. Moon, S. Docao, T.H. Nguyen, I.C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, K.B. Yoon, CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate, Science 350 (6258) (2015) 302–306. [47] E. Soubeyrand-Lenoir, C. Vagner, J.W. Yoon, P. Bazin, F. Ragon, Y.K. Hwang, C. Serre, J.S. Chang, P.L. Llewellyn, How water fosters a remarkable 5-fold increase in low-pressure CO2 uptake within mesoporous MIL-100(Fe), J. Am. Chem. Soc. 134 (24) (2012) 10174–10181. [48] Z.L. Shi, Y. Tao, J.S. Wu, C.Z. Zhang, H.L. He, L.L. Long, Y.J. Lee, T. Li, Y.B. Zhang, Robust metal–triazolate frameworks for CO2 capture from flue gas, J. Am. Chem. Soc. 142 (6) (2020) 2750–2754. [49] C.E. Bien, Q. Liu, C.R. Wade, Assessing the role of metal identity on CO2 adsorption in MOFs containing M–OH functional groups, Chem. Mater. 32 (1) (2020) 489–497. [50] S. Xian, J. Peng, Z. Zhang, Q. Xia, H. Wang, Z. Li, Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures, Chem. Eng. J. 270 (2015) 385–392. [51] Y.W. Chen, Z.W. Qiao, J.L. Huang, H.X. Wu, J. Xiao, Q.B. Xia, H.X. Xi, J. Hu, J. Zhou, Z. Li, Unusual moisture-enhanced CO2 capture within microporous PCN-250 frameworks, ACS Appl. Mater. Interfaces 10 (44) (2018) 38638–38647. |