Chinese Journal of Chemical Engineering ›› 2023, Vol. 64 ›› Issue (12): 156-167.DOI: 10.1016/j.cjche.2023.06.022
Previous Articles Next Articles
Gaiqin Miao, Lifei Liu, Xia An, Xu Wu
Received:2023-02-22
Revised:2023-06-07
Online:2024-02-05
Published:2023-12-28
Contact:
Xu Wu,E-mail:wuxu@tyut.edu.cn
Supported by:Gaiqin Miao, Lifei Liu, Xia An, Xu Wu
通讯作者:
Xu Wu,E-mail:wuxu@tyut.edu.cn
基金资助:Gaiqin Miao, Lifei Liu, Xia An, Xu Wu. Construction of CuNiAl-LDHs electrocatalyst with rich-Cu+ and —OH for highly selective reduction of CO2 to methanol[J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 156-167.
Gaiqin Miao, Lifei Liu, Xia An, Xu Wu. Construction of CuNiAl-LDHs electrocatalyst with rich-Cu+ and —OH for highly selective reduction of CO2 to methanol[J]. 中国化学工程学报, 2023, 64(12): 156-167.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2023.06.022
| [1] X.D. Ye, Y.Y. Jiang, X. Chen, B.S. Guo, S.B. Mao, Y.F. Guo, C.W. Zhao, Insights into the template effect on nanostructured CuO catalysts for electrochemical CO2 reduction to CO, Front. Energy Res. 10 (2022) 964011. [2] X. Li, S. Hong, L.D. Hao, Z.Y. Sun, Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range, Chin. J. Chem. Eng. 43 (2022) 143–151. [3] X.F. Wei, S.X. Wei, S.F. Cao, Y.Y. Hu, S.N. Zhou, S.Y. Liu, Z.J. Wang, X.Q. Lu, Cu acting as Fe activity promoter in dual-atom Cu/Fe-NC catalyst in CO2RR to C1 products, Appl. Surf. Sci. 564 (2021) 150423. [4] S. Fan, H.Y. Cheng, M.M. Feng, X.M. Wu, Z.H. Fan, D.W. Pan, G.H. He, Catalytic hydrogenation performance of ZIF-8 carbide for electrochemical reduction of carbon dioxide, Chin. J. Chem. Eng. 39 (2021) 144–153. [5] J. Albo, A. Irabien, Non-dispersive absorption of CO2 in parallel and cross-flow membrane modules using EMISE, J. Chem. Technol. Biotechnol. 87 (10) (2012) 1502–1507. [6] K. Natte, H. Neumann, M. Beller, R.V. Jagadeesh, Transition-metal-catalyzed utilization of methanol as a C1 Source in organic synthesis, Angew. Chem. Int. Ed. 56 (23) (2017) 6384–6394. [7] E.J. Dufek, T.E. Lister, M.E. McIlwain, Bench-scale electrochemical system for generation of CO and syn-gas, J. Appl. Electrochem. 41 (6) (2011) 623–631. [8] D.T. Whipple, E.C. Finke, P.J.A. Kenis, Microfluidic reactor for the electrochemical reduction of carbon dioxide: The effect of pH, Electrochem. Solid State Lett. 13 (9) (2010): 109–111. [9] M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, J.R. Fernández, M.C. Ferrari, R. Gross, J.P. Hallett, R.S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R.T.J. Porter, M. Pourkashanian, G.T. Rochelle, N. Shah, J.G. Yao, P.S. Fennell, Carbon capture and storage update, Energy Environ. Sci. 7 (1) (2014) 130–189. [10] E. Barton Cole, P.S. Lakkaraju, D.M. Rampulla, A.J. Morris, E. Abelev, A.B. Bocarsly, Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: Kinetic, mechanistic, and structural insights, J. Am. Chem. Soc. 132 (33) (2010) 11539–11551. [11] J.H.Q. Lee, S.J.L. Lauw, R.D. Webster, The electrochemical reduction of carbon dioxide (CO2) to methanol in the presence of pyridoxine (vitamin B6), Electrochem. Commun. 64 (2016) 69–73. [12] J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, A. Irabien, Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution, Appl. Catal. B 176-177 (2015) 709–717. [13] M. Irfan Malik, Z.O. Malaibari, M. Atieh, B. Abussaud, Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O, Chem. Eng. Sci. 152 (2016) 468–477. [14] X. Yang, J. Cheng, X. Yang, Y. Xu, W.F. Sun, J.H. Zhou, MOF-derived Cu@Cu2O heterogeneous electrocatalyst with moderate intermediates adsorption for highly selective reduction of CO2 to methanol, Chem. Eng. J. 431 (2022) 134171. [15] X.X. Chang, T. Wang, Z.J. Zhao, P.P. Yang, J. Greeley, R.T. Mu, G. Zhang, Z.M. Gong, Z.B. Luo, J. Chen, Y. Cui, G.A. Ozin, J.L. Gong, Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions, Angew. Chem. Int. Ed. 57 (47) (2018) 15415–15419. [16] L.K. Cui, L.Q. Hu, Q.Q. Shen, X.G. Liu, H.S. Jia, J.B. Xue, Three-dimensional porous Cu2O with dendrite for efficient photocatalytic reduction of CO2 under visible light, Appl. Surf. Sci. 581 (2022) 152343. [17] F.F. Chang, J.C. Wei, Y.P. Liu, W.W. Wang, L. Yang, Z.Y. Bai, Surface/interface reconstruction in situ on Cu2O catalysts with high exponential facets toward enhanced electrocatalysis CO2 reduction to C2+ products, Appl. Surf. Sci. 611 (2023) 155773. [18] M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz, J.C. Flake, Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces, J. Electrochem. Soc. 158 (5) (2011) E45. [19] M.M.M. Mostafa, W. Bajafar, L. Gu, K. Narasimharao, M. Abdel Salam, A. Alshehri, N.H. Khdary, S. Al-Faifi, A.D. Chowdhury, Electrochemical characteristics of nanosized Cu, Ni, and Zn cobaltite spinel materials, Catalysts 12 (8) (2022) 893. [20] K. Iwase, T. Hirano, I. Honma, Copper aluminum layered double hydroxides with different compositions and morphologies as electrocatalysts for the carbon dioxide reduction reaction, ChemSusChem 15 (2) (2022) e202102340. [21] X.M. Liu, X. Fan, H. Huang, J.Z. Gao, Electronic modulation of oxygen evolution on metal doped NiFe layered double hydroxides, J. Colloid Interface Sci. 587 (2021) 385–392. [22] G.R. Wang, Z.L. Jin, W.X. Zhang, Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors, J. Colloid Interface Sci. 577 (2020) 115–126. [23] J. Zheng, X.L. Chen, X. Zhong, S.Q. Li, T.Z. Liu, G.L. Zhuang, X.N. Li, S.W. Deng, D.H. Mei, J.G. Wang, Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol, Adv. Funct. Mater. 27 (46) (2017) 1704169. [24] Z.X. Xu, N. Wang, W. Chu, J. Deng, S.Z. Luo, in situ controllable assembly of layered-double-hydroxide-based nickel nanocatalysts for carbon dioxide reforming of methane, Catal. Sci. Technol. 5 (3) (2015) 1588–1597. [25] L.H. Wu, X.C. Zhou, G.P. Wan, Y.L. Tang, S.H. Shi, X.F. Xu, G.Z. Wang, Novel hierarchical CuNiAl LDH nanotubes with excellent peroxidase-like activity for wide-range detection of glucose, Dalton Trans. 50 (1) (2021) 95–102. [26] S. Ziegenheim, G. Varga, M. Szabados, P. Sipos, I. Pálinkó, Cu(II)Cr(III)-LDH: Synthesis, characterization, intercalation properties and a catalytic application, Chem. Pap. 72 (4) (2018) 897–902. [27] S.S. Ravuru, A. Jana, S. De, Synthesis of NiAl- layered double hydroxide with nitrate intercalation: Application in cyanide removal from steel industry effluent, J. Hazard. Mater. 373 (2019) 791–800. [28] A.A. Lobinsky, V.P. Tolstoy, Synthesis of CoAl-LDH nanosheets and N-doped graphene nanocomposite via Successive Ionic Layer Deposition method and study of their electrocatalytic properties for hydrogen evolution in alkaline media, J. Solid State Chem. 270 (2019) 156–161. [29] J.F. Chen, J.Q. Yang, L.T. Jiang, X.M. Wang, D.X. Yang, Q.Y. Wei, Y.L. Wang, R.J. Wang, Y.Y. Liu, Y.W. Yang, Improved electrochemical performances by Ni-catecholate-based metal organic framework grown on NiCoAl-layered double hydroxide/multi-wall carbon nanotubes as cathode catalyst in microbial fuel cells, Bioresour. Technol. 337 (2021) 125430. [30] J.F. Chen, J.Q. Yang, X.M. Wang, D.X. Yang, X. Wang, Y.H. Zhang, Y.R. Du, Y.L. Wang, Q.Y. Wei, R.J. Wang, Y.Y. Liu, Y.W. Yang, Enhanced bioelectrochemical performance of microbial fuel cell with titanium dioxide-attached dual metal organic frameworks grown on zinc aluminum - layered double hydroxide as cathode catalyst, Bioresour. Technol. 351 (2022) 126989. [31] W.K. Hu, Q. Liu, T.X. Lv, F. Zhou, Y.J. Zhong, Impact of interfacial CoOOH on OER catalytic activities and electrochemical behaviors of bimetallic CoxNi-LDH nanosheet catalysts, Electrochim. Acta 381 (2021) 138276. [32] X. Chen, J.P. Zhu, Y. Ding, X.X. Zuo, Synthesis of CuCo2O4 nanoparticles as an anode material with high performance for lithium-ion batteries, J. Mater. Sci. 32 (14) (2021) 18765–18776. [33] G.R. Wang, Z.L. Jin, Q.J. Guo, Ordered Self-supporting NiV LDHs@P-Nickel foam Nano-array as High-Performance supercapacitor electrode, J. Colloid Interface Sci. 583 (2021) 1–12. [34] H.Y. Cheng, X.M. Wu, X.C. Li, X.W. Nie, S. Fan, M.M. Feng, Z.H. Fan, M.Q. Tan, Y.G. Chen, G.H. He, Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction, Chem. Eng. J. 407 (2021) 126842. [35] W.T. Li, P.F. Hou, Z. Wang, P. Kang, Synergistic effect of N-doped layered double hydroxide derived NiZnAl oxides in CO2 electroreduction, Sustain. Energy Fuels 3 (6) (2019) 1455–1460. [36] X.Q. Cui, Z.Y. Pan, L.J. Zhang, H.S. Peng, G.F. Zheng, Selective etching of nitrogen-doped carbon by steam for enhanced electrochemical CO2 reduction, Adv. Energy Mater. 7 (22) (2017) 1701456. [37] B. Li, Z.X. Xu, F.L. Jing, S.Z. Luo, N. Wang, W. Chu, Improvement of catalytic stability for CO2 reforming of methane by copper promoted Ni-based catalyst derived from layered-double hydroxides, J. Energy Chem. 25 (6) (2016) 1078–1085. [38] X.C. Xiao, G.F. Wang, M.M. Zhang, Z.Z. Wang, R.J. Zhao, Y.D. Wang, Electrochemical performance of mesoporous ZnCo2O4 nanosheets as an electrode material for supercapacitor, Ionics 24 (8) (2018) 2435–2443. [39] H.J. Wu, M. Qin, L.M. Zhang, NiCo2O4 constructed by different dimensions of building blocks with superior electromagnetic wave absorption performance, Compos. B 182 (2020) 107620. [40] H.C. Fu, A.T. Zhang, F.H. Jin, H.W. Guo, W.J. Huang, W.T. Cheng, J.Q. Liu, Origami and layered-shaped ZnNiFe-LDH synthesized on Cu(OH)2 nanorods array to enhance the energy storage capability, J. Colloid Interface Sci. 607 (2022) 1269–1279. [41] U. Guharoy, T. Ramirez Reina, E. Olsson, S. Gu, Q. Cai, Theoretical insights of Ni2P (0001) surface toward its potential applicability in CO2 conversion via dry reforming of methane, ACS Catal. 9 (4) (2019) 3487–3497. [42] J.Q. Yang, J.F. Chen, X.M. Wang, D.X. Yang, Y.W. Zhang, Y.Q. Wu, Y.Y. Zhao, Y.L. Wang, Q.Y. Wei, R.J. Wang, Y.Y. Liu, Y.W. Yang, Improving oxygen reduction reaction of microbial fuel cell by titanium dioxide attaching to dual metal organic frameworks as cathode, Bioresour. Technol. 349 (2022) 126851. [43] R. Shi, Y.Y. Zhang, Z.H. Wang, Facile synthesis of a ZnCo2O4 electrocatalyst with three-dimensional architecture for methanol oxidation, J. Alloys Compd. 810 (2019) 151879. [44] R.J. Lim, M.S. Xie, M.A. Sk, J.M. Lee, A. Fisher, X. Wang, K.H. Lim, A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts, Catal. Today 233 (2014) 169–180. [45] H. Seo, M.H. Katcher, T.F. Jamison, Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow, Nat. Chem. 9 (5) (2017) 453–456. |
| [1] | Mingxue Yin, Bo Jia, Kuiyi You, Bo Jin, Yangqiang Huang, Xiao Luo, Zhiwu Liang. A highly efficient La-modified ZnAl-LDO catalyst and its performance in the synthesis of dimethyl carbonate from methyl carbamate and methanol [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 9-23. |
| [2] | Ting Li, Hongxia Guo, Xiao Wang, Huan Wang, Li Liu, Wenquan Cui, Xiaoran Sun, Yinghua Liang. Loading CuO on the surface of MgO with low-coordination basic O2- sites for effective enhanced CO2 capture and photothermal synergistic catalytic reduction of CO2 to ethanol [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 58-67. |
| [3] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
| [4] | Pengcheng Zou, Kai Wang. Methanolysis of amides under high-temperature and high-pressure conditions with a continuous tubular reactor [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 170-178. |
| [5] | Jiaxin Wu, Chenxiao Wang, Xianliang Meng, Haichen Liu, Ruizhi Chu, Guoguang Wu, Weisong Li, Xiaofeng Jiang, Deguang Yang. Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTA reaction by Si/Al ratio regulation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 314-324. |
| [6] | Tongming Su, Jundong Meng, Ya Xiao, Liuyun Chen, Hongbing Ji, Zuzeng Qin. In situ growth of cobalt on ultrathin Ti3C2Tx as an efficient cocatalyst of g-C3N4 for enhanced photocatalytic CO2 reduction [J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 76-86. |
| [7] | Xing Su, Ning Qiao, Bao-Chang Sun. A route for the study on mass transfer enhancement by adding particles in liquid phase [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 158-165. |
| [8] | Siyue Ren, Xiao Feng. Emergy evaluation of aromatics production from methanol and naphtha [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 134-141. |
| [9] | Xiangjun Li, Shujun Li, Xiaoping Wang, Muhammad Asif Nawaz, Dianhua Liu. Polyoxymethylene dimethyl ethers synthesis from methanol and formaldehyde solution over one-pot synthesized spherical mesoporous sulfated zirconia [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 161-172. |
| [10] | Youwei Yang, Jingyu Zhang, Yueqi Gao, Busha Assaba Fayisa, Antai Li, Shouying Huang, Jing Lv, Yue Wang, Xinbin Ma. Highly dispersed nickel boosts catalysis by Cu/SiO2 in the hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 77-85. |
| [11] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
| [12] | Yachen Deng, Shifu Wang, Yanqiang Huang, Xuning Li. Structural reconstruction of Sn-based metal-organic frameworks for efficient electrochemical CO2 reduction to formate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 353-359. |
| [13] | Busha Assaba Fayisa, Yushan Xi, Youwei Yang, Yueqi Gao, Antai Li, Mei-Yan Wang, Jing Lv, Shouying Huang, Yue Wang, Xinbin Ma. Pt-modulated Cu/SiO2 catalysts for efficient hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 366-373. |
| [14] | Chun Yao, Jiangwei Chang, Yiwang Ding, Chang Yu, Jieshan Qiu. Glutamic acid-assisted hydrothermal recrystallization to configure bamboo-like carbon nanotubes for improved triiodide reduction [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 159-167. |
| [15] | Junhua Gao, Keming Ji, Hao Zhou, Jiayao Xun, Zenghou Liu, Kan Zhang, Ping Liu. Synthesis and characterization of BZSM-5 and its catalytic performance in the methanol to hydrocarbons reaction [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 196-203. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
