[1] C.X. Yi, L.J. Zhou, X.Q. Wu, W. Sun, L.S. Yi, Y. Yang, Technology for recycling and regenerating graphite from spent lithium-ion batteries, Chin. J. Chem. Eng. 39 (2021) 37-50. [2] Z.W. Shang, Z.H. Lian, M.J. Li, K. Han, H.X. Zheng, Machine-learning-assisted multi-objective optimization in vertical zone refining of ultra-high purity indium, Sep. Purif. Technol. 305 (2023) 122430. [3] R. Markovic, V. Krstic, B. Friedrich, S. Stopic, J. Stevanovic, Z. Stevanovic, V. Marjanovic, Electrorefining process of the non-commercial copper anodes, Metals 11 (8) (2021) 1187. [4] C. Ma, X.C. Zhang, G.Y. Zhang, W.P. Chen, S. Gu, Global utilization of solar energy and development of solar cell materials, Adv. Mater. Res. 608-609 (2012) 151-154. [5] J. Lin, X. Li, W. Chen, M.X. Wang, Mapping the upstream journey of China's indium: a trade-linked substance flow analysis, J. Clean. Prod. 380 (2022) 135051. [6] J.W. Jia, Y. Zhang, L.S. Duan, Q.P. Wu, Y. Chen, S. Xue, An asymmetrically substituted dithieno[3, 2-b: 2’,3’-d]pyrrole organic small-molecule hole-transporting material for high-performance perovskite solar cells, Chin. J. Chem. Eng. 45 (2022) 51-57. [7] Q. Huang, J. Zhao, Y.L. Chen, J. Wang, Y. Zhao, X.D. Zhang, G.F. Hou, Plasmonic modulated back reflector for thin film photovoltaics, Sol. Energy Mater. Sol. Cells 225 (2021) 110997. [8] Hepbasli, Z. Alsuhaibani, A key review on the present status and future directions of solar energy studies and applications in Saudi Arabia, Renew. Sustain. Energy Rev. 15 (2011) 5021-5050. [9] U. Bardi, C. Borri, A. Lavacchi, A. Tolstogouzov, E.B. Trunin, O.E. Trunina, Purification of liquid indium by electric current-induced impurity migration in a static transverse magnetic field, Scripta Mater. 60 (6) (2009) 423-426. [10] J. Chen, L.D. Li, L. Yang, C. Chen, S.T. Wang, Y. Huang, D.P. Cao, A dual metal-organic framework strategy for synthesis of FeCo@NC bifunctional oxygen catalysts for clean energy application, Chin. J. Chem. Eng. 43 (2022) 161-168. [11] I. Gharibshahian, A.A. Orouji, S. Sharbati, Suitable top cell partners for copper indium gallium selenide-based tandem solar cells to achieve >30% efficiency, Phys. Status Solidi A 218 (15) (2021): 172-178. [12] S.L. Zhou, Z.M. Huang, X.L. Gong, W.Y. Zhu, Hydride generation atomic fluorescence spectrometric determination of ultratrace arsenic in high purity indium oxide, Anal. Lett. 45 (14) (2012) 2006-2013. [13] X.B. Li, Z.G. Deng, C.X. Li, C. Wei, M.T. Li, G. Fan, H. Rong, Direct solvent extraction of indium from a zinc residue reductive leach solution by D2EHPA, Hydrometallurgy 156 (2015) 1-5. [14] M.Z. Wu, C.J. Zhan, Experimental study on preparation of high purity indium by electrolytic refining and zone melting, Min. Metall. 25 (1) (2016) 59-61. [15] D.S. Li, Y.N. Dai, B. Yang, D.C. Liu, Y. Deng, Purification of indium by vacuum distillation and its analysis, J. Cent. South Univ. 20 (2) (2013) 337-341. [16] Z.H. Zhou, J.M. Ruan, H.B. Mo, Preparation of 6N high-purity indium by method of physical-chemical purification and electrorefining, J. Mater. Sci. 40 (24) (2005) 6529-6533. [17] L.S. Chen, M.Z.Wu, X.W. Lu, Y.W.Jia, Preparation of high purity indium for semiconductor by vacuum distillation and directional solidification of seed crystal.Min. Metall. Eng.42 (1) (2022) 99-102. [18] S. Afyouni, S.M. Smith, T.E. Nichols, Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation, Neuroimage 199 (2019) 609-625. [19] Y.S. Mu, X.D. Liu, L.D. Wang, A Pearson's correlation coefficient based decision tree and its parallel implementation, Inf. Sci. 435 (2018) 40-58. [20] J. Ashok Kumar, S. Abirami, Aspect-based opinion ranking framework for product reviews using a Spearman's rank correlation coefficient method, Inf. Sci. 460 (2018) 23-41. [21] M.J. Warrens, Transforming intraclass correlation coefficients with the Spearman-Brown formula, J. Clin. Epidemiol. 85 (2017) 14-16. [22] W.W. Rudolph, D. Fischer, M.R. Tomney, C.C. Pye, Indium(iii) hydration in aqueous solutions of perchlorate, nitrate and sulfate. Raman and infrared spectroscopic studies and ab-initio molecular orbital calculations of indium(iii)-water clusters, Phys. Chem. Chem. Phys. 6 (22) (2004) 5145-5155. [23] Dell'Era, E. Ciro, M. Pasquali,C. Lupi, Process parameters affecting the efficiency of indium electrowinning results from sulfate baths. Hydrometallurgy.193 (2020) 105296. [24] Z.H. Zhou, D.M. Zeng, Y.N. Niu, Behavior of tin ion and control of tin content in electrolytic refining of indium.Rare Met.6 (2001) 478-480. [25] E. Ciro, A. Dell'Era, M. Pasquali, C. Lupi, Indium electrowinning kinetics on titanium, aluminum and copper supports from sulfate solution, J. Electroanal. Chem. 885 (2021) 115099. [26] Z.Hou, J. Li, X. Wang, Y. Wang, H. Xing, Z. Li, Effect of tin ion on electrodeposition behavior of indium. Electrochemistry. 90 (8) (2022) 087007. [27] S. Xu, G. Wang, J.L. Fan, Z.M. Wang, J. Zhang, J.W. Chen, L. Zheng, J.G. Pan, R.L. Wang, Preparation of high purity indium by chemical purification: focus on removal of Cd, Pb, Sn and removal mechanism, Hydrometallurgy 200 (2021) 105551. [28] E. Ciro, A. Dell'Era, M. Razzi, C. Lupi, Optimization of indium electrowinning from sulfate solutions on Ni cathode, J. Clean. Prod. 347 (2022) 131309. [29] E.B. Carneiro-Neto, M.C. Lopes, E.C. Pereira, Simulation of interfacial pH changes during hydrogen evolution reaction, J. Electroanal. Chem. 765 (2016) 92-99. [30] Y. Chung, C.W. Lee, Electrochemical behaviors of indium. J. Electrochem. Sci. Te.3 (1) (2012) 1-13. [31] S. Kumar, S. Pande, P. Verma, Factor effecting electro-deposition process, Int. J.Curr.Eng. Technol. 5 (2) (2015) 700-703. [32] D. Dong, L. van Oers, A. Tukker, E. van der Voet, Assessing the future environmental impacts of copper production in China: implications of the energy transition, J. Clean. Prod. 274 (2020) 122825. |