[1] Maihatchi Ahamed, A., Pons, M.N., Ricoux, Q., Issa, S., Goettmann, F., Lapicque, F. New pathway for utilization of jarosite, an industrial waste of zinc hydrometallurgy, Miner. Eng., 170 (2021) 107030. [2] S.Q. Chen, X.F. Zeng, Q. Liang, L. Hu, S.Y. Chen, D.J. He, Y.H. Han, Z.S. Zhao, R. Huang, Y. Huang, S.S. Zhou, J.Q. Wang, R. Wang, J.C. Shu, M.J. Chen, Zinc efficiently extracted from zinc calcine by reduced wet grinding: ZnFe2O4 to ZnO and Fe3O4, J. Clean. Prod. 399 (2023) 136536. [3] Kumar Singh, V., Manna, S., Kumar Biswas, J., Pugazhendhi, A. Recovery of residual metals from jarosite waste using chemical and biochemical processes to achieve sustainability: A state-of-the-art review, J. Environ. Manag., 343 (2023) 118221. [4] Wang, R. Fundamental research on valuable metals recovery from jarosite by slurry electrolysis, Ph. D. Thesis, Southwest University of Science and Technology, China, (2023) 133. [5] S.H. Ju, Y.F. Zhang, Y. Zhang, P.Y. Xue, Y.H. Wang, Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy, J. Hazard. Mater. 192 (2) (2011) 554-558. [6] Y.K. Yang, S. Chen, B. Wang, X.Y. Wen, H.K. Li, R.J. Zeng, Effect of ferric ions on the anaerobic bio-dissolution of jarosites by Acidithiobacillus ferrooxidans, Sci. Total Environ. 710 (2020) 136334. [7] H.S. Han, W. Sun, Y.H. Hu, B.L. Jia, H.H. Tang, Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy, J. Hazard. Mater. 278 (2014) 49-54. [8] Zhu, D., Yang, C., Pan, J., Guo, Z., Li, S. New pyrometallurgical route for separation and recovery of Fe, Zn, In, Ga and S from jarosite residues, J. Clean. Prod., 205 (2018) 781-788. [9] H.F. Yang, Effect of temperature on the compressive strength and phase change of pellets with coaland jarosite slag, Sinter. Pelletiz. 45 (3) (2020) 61-66 (in Chinese). [10] S.H. Ahoranta, M.E. Kokko, S. Papirio, B. Ozkaya, J.A. Puhakka, Arsenic removal from acidic solutions with biogenic ferric precipitates, J. Hazard. Mater. 306 (2016) 124-132. [11] H.F. Yang, Possibility and prospect of recovery of valuable metals in jarosite residues using microorganism mineralization-flotation method, Multipurpose Util. Mineral Resour. 1 (2020) 43-46 (in Chinese). [12] T. Palden, M. Regadio, B. Onghena, K. Binnemans, Selective metal recovery from jarosite residue by leaching with acid-equilibrated ionic liquids and precipitation-stripping, ACS Sustainable Chem. Eng. 7 (4) (2019) 4239-4246. [13] Y.M. Wang, Y.M. Luo, X.G. Hou, X.W. Wang, Hot-acid leaching processing of potassium sodium slag by means of hot-acid leaching, J. Lanzhou Univ. Technol. 35 (6) (2009) 17-21. [14] M.S. Safarzadeh, D. Moradkhani, M. Ojaghi-Ilkhchi, Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues, J. Hazard. Mater. 163 (2-3) (2009) 880-890. [15] X.R. Zhang, Z.H. Liu, X.B. Wu, J. Du, C.Y. Tao, Electric field enhancement in leaching of manganese from low-grade manganese dioxide ore: Kinetics and mechanism study, J. Electroanal. Chem. 788 (2017) 165-174. [16] H. Peng, Z.H. Liu, C.Y. Tao, Selective leaching of vanadium from chromium residue intensified by electric field, J. Environ. Chem. Eng. 3 (2) (2015) 1252-1257. [17] Y.W. Li, W.H. Xu, J.H. Yao, B. Huang, S.H. Xiao, J.W. Yang, Amorphous FePO4/reduced graphene oxide composite prepared from jarosite residue and its application as a novel anode material for lithium-ion batteries, J. Ind. Eng. Chem. 125 (2023) 211-220. [18] J.H. Yao, J. Yan, Y. Huang, Y.W. Li, S.H. Xiao, J.R. Xiao, Preparation of ZnFe2O4/α-Fe2O3 nanocomposites from sulfuric acid leaching liquor of jarosite residue and their application in lithium-ion batteries, Front. Chem. 6 (2018) 442. [19] J.H. Yao, M.A. Xu, Y.W. Li, B. Huang, J.W. Yang, Facile preparation of Fe3O4/ZnFe2O4/ZnS/C composite from the leaching liquor of jarosite residue as a high-performance anode material for Li-ion batteries, J. Alloys Compd. 952 (2023) 169993. [20] Z.H. Cao, B.Z. Ma, C.Y. Wang, Y.Q. Chen, B. Liu, P. Xing, W.J. Zhang, E-pH diagrams for the metal-water system at 150°C: Thermodynamic analysis and application for extraction and separation of target metals from saprolitic laterite, Miner. Eng. 152 (2020) 106365. [21] F.P.C. Silvas, M.M. Jimenez Correa, M.P.K. Caldas, V.T. de Moraes, D.C.R. Espinosa, J.A.S. Tenorio, Printed circuit board recycling: physical processing and copper extraction by selective leaching, Waste Manag. 46 (2015) 503-510. [22] H. Jin, J.L. Zhang, D.D. Wang, Q.K. Jing, Y.Q. Chen, C.Y. Wang, Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature, Green Chem. 24 (1) (2022) 152-162. [23] Y. Tian, J.C. Shu, M.J. Chen, J.Y. Wang, Y. Wang, Z.G. Luo, R. Wang, F.H. Yang, F.R. Xiu, Z. Sun, Manganese and ammonia nitrogen recovery from electrolytic manganese residue by electric field enhanced leaching, J. Clean. Prod. 236 (2019) 117708. [24] H. Wang, Q.M. Feng, K. Liu, The dissolution behavior and mechanism of kaolinite in alkali-acid leaching process, Appl. Clay Sci. 132-133 (2016) 273-280. [25] D.S. Kong, Z.H. Zhou, S.J. Song, R.L. Jiang, Acid leaching extraction mechanism of aluminum and iron ions from coal gangue based on CaF2 assistance and process optimization, Materials 16 (2) (2023) 499. [26] S.Q. Sun, C.X. Jin, W.T. Zhao, W.Z. He, G.M. Li, H.C. Zhu, J.W. Huang, Process and mechanism of enhanced HCl leaching of platinum group metals from waste three-way catalysts by Li2CO3 calcination pretreatment, J. Hazard. Mater. 452 (2023) 131348. [27] V.N. Ramachandra Sarma, K. Deo, A.K. Biswas, Dissolution of zinc ferrite samples in acids, Hydrometallurgy 2 (1976) 171-184. [28] W.Z. Mu, T.A. Zhang, Y. Liu, Y. Gu, Z.H. Dou, G.Z. Lu, L. Bao, W.G. Zhang, E-pH diagram of ZnS-H2O system during high pressure leaching of zinc sulfide, Trans. Nonferrous Met. Soc. China 20 (10) (2010) 2012-2019. [29] H.J. Shentu, B. Xiang, Y.J. Cheng, T. Dong, J. Gao, Y.G. Xia, A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery, Environ. Technol. Innov. 23 (2021) 101569. [30] J.C. Qin, T. Fujita, J.N. Xu, Y.Z. Wei, G. Dodbiba, Y.L. Zhou, Z.Y. Li, Leaching behavior of indium from waste liquid crystal display: further study on the coupling effect of multi-factors for optimum leaching process, SSRN Electron. J. (2021)107930. [31] F. Zhang, C. Wei, Z.G. Deng, C.X. Li, X.B. Li, M.T. Li, Reductive leaching of zinc and indium from industrial zinc ferrite particulates in sulphuric acid media, Trans. Nonferrous Met. Soc. China 26 (9) (2016) 2495-2501. [32] X.J. Hui, J.H. Zhang, Y. Liang, Y.W. Chang, W. Zhang, G.Q. Zhang, Comparison and evaluation of vanadium extraction from the calcification roasted vanadium slag with carbonation leaching and sulfuric acid leaching, Sep. Purif. Technol. 297 (2022) 121466. [33] Y. Yang, J.C. Shu, L. Zhang, P.X. Su, W.L. Meng, Q.Y. Wan, Z.H. Liu, R.L. Liu, F.M. Chen, X.Q. Ming, Enhanced leaching of Mn from electrolytic manganese anode slime via an electric field, Energy Fuels 35 (24) (2021) 20224-20230. [34] Z.G. Luo, J.C. Shu, M.J. Chen, R. Wang, X.F. Zeng, Y. Yang, R. Wang, S.Y. Chen, R.L. Liu, Z.H. Liu, Z. Sun, K.L. Yu, Y. Deng, Enhanced leaching of manganese from low-grade pyrolusite using ball milling and electric field, Ecotoxicol. Environ. Saf. 211 (2021) 111893. [35] Rongrui Deng, Xie, Z., Liu, Z. Enhancement of vanadium extraction at low temperature sodium roasting by electric field and sodium persulfate, Hydrometallurgy, 189 (2019). [36] L. Tian, A. Gong, X.G. Wu, X.Q. Yu, Z.F. Xu, L.J. Chen, Process and kinetics of the selective extraction of cobalt from high-silicon low-grade cobalt ores using ammonia leaching, Int. J. Miner. Metall. Mater. 29 (2) (2022) 218-227. [37] B.J. Wang, L.L. Mu, S. Guo, Y.F. Bi, Lead leaching mechanism and kinetics in electrolytic manganese anode slime, Hydrometallurgy 183 (2019) 98-105. [38] M.J. Chen, R. Wang, Y.P. Qi, Y.H. Han, R. Wang, J.L. Fu, F.S. Meng, X.X. Yi, J.F. Huang, J.C. Shu, Cobalt and lithium leaching from waste lithium ion batteries by glycine, J. Power Sources 482 (2021) 228942. [39] P.L. Breuer, M.I. Jeffrey, Thiosulfate leaching kinetics of gold in the presence of copper and ammonia, Miner. Eng. 13 (10-11) (2000) 1071-1081. [40] M. Sethurajan, D. Huguenot, R. Jain, P.N.L. Lens, H.A. Horn, L.H.A. Figueiredo, E.D. van Hullebusch, Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues, J. Hazard. Mater. 324 (2017) 71-82. [41] Y.Y. Fan, Y. Liu, L.P. Niu, T.L. Jing, W.G. Zhang, T.A. Zhang, Reductive leaching of indium-bearing zinc ferrite in sulfuric acid using sulfur dioxide as a reductant, Hydrometallurgy 186 (2019) 192-199. [42] Y.J. Meng, Y.D. Wang, L.J. Liu, Y.G. Fang, F.Q. Ma, C.H. Zhang, H.X. Dong, Efficient and magnetically recoverable U (VI) adsorbent: Fe3O4 loaded hypercrosslink copoly (styrene/maleic anhydride), Colloids Surf. A Physicochem. Eng. Aspects 632 (2022) 127644. |