Chinese Journal of Chemical Engineering ›› 2024, Vol. 71 ›› Issue (7): 58-65.DOI: 10.1016/j.cjche.2024.04.005
Previous Articles Next Articles
Shun Guo, Yunfei Li, Shengwei Tang, Tao Zhang
Received:
2023-11-22
Revised:
2024-02-23
Online:
2024-08-30
Published:
2024-07-28
Contact:
Tao Zhang,E-mail:zhangtao@scu.edu.cn
Supported by:
Shun Guo, Yunfei Li, Shengwei Tang, Tao Zhang
通讯作者:
Tao Zhang,E-mail:zhangtao@scu.edu.cn
基金资助:
Shun Guo, Yunfei Li, Shengwei Tang, Tao Zhang. The nitrogen transformation behavior based on the pyrolysis products of wheat straw[J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 58-65.
Shun Guo, Yunfei Li, Shengwei Tang, Tao Zhang. The nitrogen transformation behavior based on the pyrolysis products of wheat straw[J]. 中国化学工程学报, 2024, 71(7): 58-65.
[1] X. Liu, Z. Luo, C. Yu, B. Jin, H. Tu, Release mechanism of fuel-N into NOx and N2O precursors during pyrolysis of Rice Straw, Energies 11 (2018) 520. [2] F. Shan, Q. Lin, K. Zhou, Y. Wu, W. Fu, P. Zhang, L. Song, C. Shao, B. Yi, An experimental study of ignition and combustion of single biomass pellets in air and oxy-fuel, Fuel 188 (2017) 277-284. [3] M. Tripathi, J.N. Sahu, P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review, Renew.Sust. Energ. Rev. 55 (2016) 467-481. [4] D. Mohan, C.U. Pittman, P.H. Steele, Pyrolysis of wood/biomass for bio-oil: A critical review, Energy Fuels 20 (2006) 848-889. [5] W.J. Liu, H. Jiang, H.Q. Yu, Development of biochar-based functional materials: Toward a sustainable platform carbon material, Chem. Rev. 115 (2015) 12251-12285. [6] L. Leng, X. Xu, L. Wei, L. Fan, H. Huang, J. Li, Q. Lu, J. Li, W. Zhou, Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations, Sci. Total Environ. 664 (2019) 11-23. [7] S. Yuan, Z. Tan, Q. Huang, Migration and transformation mechanism of nitrogen in the biomass-biochar-plant transport process, Renew. Sust. Energy Rev. 85 (2018) 1-13. [8] X. Zhu, S. Yang, L. Wang, Y. Liu, F. Qian, W. Yao, S. Zhang, J. Chen, Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology, Environ. Pollut. 211 (2016) 20-27. [9] S. Xu, J. Chen, H. Peng, S. Leng, H. Li, W. Qu, Y. Hu, H. Li, S. Jiang, W. Zhou, L. Leng, Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar, Fuel 291 (2021) 120128. [10] J. Leppalahti, Formation of NH3 and HCN in slow-heating-rate inert pyrolysis of peat, coal and bark, Fuel 74 (1995) 1363-1368. [11] J. C. Zhou, S. M. Masutani, D. M. Ishimura, S.Q. Turn, C.M. Kinoshita, Release of fuel-bound nitrogen during biomass gasification, Ind. Eng. Chem. Res. 39 (2000) 626-634. [12] J. Zhang, Y. Tian, J. Zhu, W. Zuo, L. Yin, Characterization of nitrogen transformation during microwave-induced pyrolysis of sewage sludge, J. Anal. Appl. Pyrolysis 105 (2014) 335-341. [13] S. Cheng, Y. Qiao, J. Huang, W. Wang, Z. Wang, Y. Yu, M. Xu, Effects of Ca and Na acetates on nitrogen transformation during sewage sludge pyrolysis, Proc. Combust. Inst. 37 (2019) 2715-2722. [14] L. Wei, L. Wen, T. Yang, N. Zhang, Nitrogen transformation during sewage sludge pyrolysis, Energy Fuels 29 (2015) 5088-5094. [15] P. Zhou, S. Xiong, Y. Zhang, H. Jiang, Y. Chi, L. Li, Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by Py-GC/MS and Py-FTIR, Int. J. Hydrog. Energy 42 (2017) 18181-18188. [16] W. Chen, H. Yang, Y. Chen, M. Xia, X. Chen, H. Chen, Transformation of nitrogen and evolution of N-containing species during algae pyrolysis, Environ. Sci. Technol. 51(2017) 6570-6579. [17] H. Nan, Z. Xiao, L. Zhao, F. Yang, H. Xu, X. Xu, H. Qiu, Nitrogen transformation during pyrolysis of various N-containing biowastes with participation of mineral calcium, ACS Sustain. Chem. Eng. 8 (2020) 12197-12207. [18] Y. Li, C. Hong, Y. Wang, Y. Xing, X. Chang, Z. Zheng, Z. Li, X. Zhao, Nitrogen migration mechanism during pyrolysis of penicillin fermentation residue based on product characteristics and quantum chemical analysis, ACS Sustain. Chem. Eng. 8 (2020) 7721-7740. [19] W. de Jong, G.Di Nola, B.C.H. Venneker, H. Spliethoff, M.A. Wojtowicz, TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors, Fuel 86 (2007) 2367-2376. [20] K. Tian, W.J. Liu, T.T. Qian, H. Jiang, H.Q. Yu, Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge, Environ. Sci. Technol. 48 (2014) 10888-10896. [21] G. Stubenberger, R. Scharler, S. Zahirovic, I. Obernberger, Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models, Fuel 87 (2008) 793-806. [22] T. Liu, Y. Guo, N. Peng, Q. Lang, Y. Xia, C. Gai, Z. Liu, Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar, J. Anal. Appl. Pyrolysis 126 (2017) 298-306. [23] Y. Wang, B. Dong, Y. Fan, Y. Hu, X. Zhai, C. Deng, Y. Xu, D. Shen, X. Dai, Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content, Chemosphere 219 (2019) 383-389. [24] M. Garcia-Perez, X.S. Wang, J. Shen, M.J. Rhodes, F. Tian, W.J. Lee, H. Li, C.Z. Wu, Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products, Ind. Eng. Chem. Res. 47 (2008) 1846-1854. [25] I.Y. Eom, J.Y. Kim, T.S. Kim, S.M. Lee, D. Choi, I.G. Choi, J.W. Choi, Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass, Bioresource Technol. 104 (2012) 687-694. [26] B.M. Wagenaar, W. Prins, W.P.M. Van Swaaij, Pyrolysis of biomass in the rotating cone reactor: Modelling and experimental justification, Chem. Eng. Sci. 49 (1994) 5109-5126. [27] J. Akhtar, N.S. Amin, A review on operating parameters for optimum liquid oil yield in biomass pyrolysis, Renew. Sust. Energy Rev. 16 (2012) 5101-5109. [28] P. Zong, Y. Jiang, Y. Tian, J. Li, M. Yuan, Y. Ji, M. Chen, D. Li, Y. Qiao, Pyrolysis behavior and product distributions of biomass six group components: Starch, cellulose, hemicellulose, lignin, protein and oil, Energy Conv. Manag. 216 (2020) 112777. [29] Y. Tian, J. Zhang, W. Zuo, L. Chen, Y. Cui, T. Tan, Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge, Environ. Sci. Technol. 47 (2013) 3498-3505. [30] Q. Wang, Z. Zhang, G. Xu, G. Li, Pyrolysis behaviors of antibiotic fermentation residue and wastewater sludge from penicillin production: Kinetics, gaseous products distribution, and nitrogen transformation, J. Anal. Appl. Pyrol. 158 (2021) 105208. [31] Q.Q. Ren, C.S. Zhao, X. Wu, C. Liang, X.P. Chen, J.Z. Shen, Z. Wang, Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2, Fuel 89 (2010) 1064-1069. [32] K.M. Hansson, J. Samuelsson, C. Tullin, L.E. Amand, Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds, Combust. Flame 137 (2004) 265-277. [33] L. L. Tan, C. Z. Li, Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. part I. effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis, Fuel 79 (2000) 1883-1889. [34] S. Yuan, Z. Zhou, J. Li, X. Chen, F. Wang, HCN and NH3 released from biomass and soybean cake under rapid pyrolysis, Energy Fuels 24 (2010) 6166-6171. [35] X. Liu, Z. Luo, C. Yu, G. Xie, Conversion mechanism of fuel-N during pyrolysis of biomass wastes, Fuel 246 (2019) 42-50. [36] Y. Zhang, C. Zhou, Z. Deng, X. Li, Y. Liu, J. Qu, X. Li, L. Wang, J. Dai, J. Fu, C. Zhang, M. Yu, H. Yu, Influence of corn straw on distribution and migration of nitrogen and heavy metals during microwave-assisted pyrolysis of municipal sewage sludge, Sci. Total Environ. 815 (2022) 152303. [37] S.W. Kim, B.S. Koo, D.H. Lee, A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed, Bioresource. Technol. 162 (2014) 96-102. [38] O. Debono, A. Villot, Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes, J. Anal. Appl. Pyrolysis114 (2015) 222-234. [39] W. Chen, Y. Chen, H. Yang, M. Xia, K. Li, X. Chen, H. Chen, Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect, Bioresource Technol. 245 (2017) 860-868. |
[1] | Pengxing Yuan, Xiude Hu, Jingjing Ma, Tuo Guo, Qingjie Guo. Thermogravimetric characteristics of corn straw and bituminous coal copyrolysis based the ilmenite oxygen carriers [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 8-15. |
[2] | Qing Liu, Tinghao Jia, Lun Pan, Jijun Zou, Xiangwen Zhang. Relationship between hydrogenation degree and pyrolysis performance of jet fuel [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 35-42. |
[3] | Congjing Ren, Peng Zhang, Qi Song, Zhengliang Huang, Yao Yang, Yongrong Yang. Particle agglomeration and inhibition method in the fluidized pyrolysis reaction of waste resin [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 135-147. |
[4] | Zhihao Guo, Jiuxuan Zhang, Lanlan Chen, Chaoqun Fan, Hong Jiang, Rizhi Chen. Hollow ZIF-67-derived Co@N-doped carbon nanotubes boosting the hydrogenation of phenolic compounds to alcohols [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 157-166. |
[5] | Wenchang Wu, Kefan Yu, Liang Zhao, Hui Dong. Computational fluid dynamics modeling of rapid pyrolysis of solid waste magnesium nitrate hydrate under different injection methods [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 224-237. |
[6] | Shuaiqiang Yang, Lin Du, Guangchao Ding, Runguo Liu, Wenli Song, Songgeng Li. Filtration performance and modeling of granular bed for dust removal from coal pyrolytic vapors [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 35-42. |
[7] | Li Qiu, Chao Li, Shu Zhang, Shuang Wang, Bin Li, Zhenhua Cui, Yonggui Tang, Obid Tursunov, Xun Hu. Importance of oxygen-containing functionalities and pore structures of biochar in catalyzing pyrolysis of homologous poplar [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 200-211. |
[8] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[9] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[10] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[11] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[12] | Mingjun Pan, Chengkai Jin, Bingying Han, Runping Ye, Rongbin Zhang, Gang Feng. A theoretical insight about co-pyrolysis reaction of natural gas and coal [J]. Chinese Journal of Chemical Engineering, 2023, 63(11): 220-225. |
[13] | Jiali Du, Feng Wu, Xiaoxun Ma. Progress in research of process intensification of spouted beds: A comprehensive review [J]. Chinese Journal of Chemical Engineering, 2023, 62(10): 238-260. |
[14] | Xueguang Li, Mengyan Yu, Changfa Zhang, Xiangtong Li, Guangqing Liu, Jianjun Dai, Chunbao Zhou, Yang Liu, Jie Fu, Yingwen Zhang, Bang Yao. Co-pyrolysis of soybean soapstock with iron slag/aluminum scrap, and characterization and analysis of their products [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 25-36. |
[15] | Linyang Wang, Qiang Wang, Yongqi Liu, Qiuxiang Yao, Ming Sun, Xiaoxun Ma. Catalytic conversion of asphaltenes to BTXN using metal-loaded modified HZSM-5 [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 253-264. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||