[1] A. Agrawal, K.K. Sahu, An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries, J. Hazard Mater. 171 (1-3) (2009) 61-75. [2] B. Yuzer, M.I. Aydin, H. Yildiz, B. Hasancebi, H. Selcuk, Y. Kadmi, Optimal performance of electrodialysis process for the recovery of acid wastes in wastewater: practicing circular economy in aluminum finishing industry, Chem. Eng. J. 434 (2022) 134755. [3] Q. Liu, D. Pan, T.T. Ding, M.C. Ye, F.J. He, Clean & environmentally friendly regeneration of Fe-surface cleaning pickling solutions, Green Chem. 22 (24) (2020) 8728-8733. [4] T. Benvenuti, R.S. Krapf, M.A.S. Rodrigues, A.M. Bernardes, J. Zoppas-Ferreira, Recovery of nickel and water from nickel electroplating wastewater by electrodialysis, Sep. Purif. Technol. 129 (2014) 106-112. [5] M. Reig, X. Vecino, C. Valderrama, O. Gibert, J.L. Cortina, Application of selectrodialysis for the removal of as from metallurgical process waters: recovery of Cu and Zn, Sep. Purif. Technol. 195 (2018) 404-412. [6] Y. Gao, T. Yue, W. Sun, D.D. He, C.L. Lu, X.Z. Fu, Acid recovering and iron recycling from pickling waste acid by extraction and spray pyrolysis techniques, J. Clean. Prod. 312 (2021) 127747. [7] R. Perez-Lopez, J. Castillo, D. Quispe, J.M. Nieto, Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste, J. Hazard Mater. 177 (1-3) (2010) 762-772. [8] A. Azizitorghabeh, F. Rashchi, A. Babakhani, M. Noori, Synergistic extraction and separation of Fe(III) and Zn(II) using TBP and D2EHPA, Sep. Sci. Technol. 52 (3) (2017) 476-486. [9] M. Regel-Rosocka, A review on methods of regeneration of spent pickling solutions from steel processing, J. Hazard Mater. 177 (1-3) (2010) 57-69. [10] M. Reig, C. Valderrama, O. Gibert, J.L. Cortina, Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: monovalent-divalent ions separation and acid and base production, Desalination 399 (2016) 88-95. [11] V.S. Soldatov, V.M. Zelenkovskii, L.A. Orlovskaya, Sorption of bivalent ions by a fibrous chelating ion exchanger and the structure of sorption complexes, React. Funct. Polym. 71 (1) (2011) 49-61. [12] L. Monat, W. Zhang, A. Jarosikova, H. Haung, R. Bernstein, O. Nir, Circular process for phosphoric acid plant wastewater facilitated by selective electrodialysis, ACS Sustain. Chem. Eng. 10 (35) (2022) 11567-11576. [13] S. Kum, M.R. Landsman, G.M. Su, G. Freychet, D.F. Lawler, L.E. Katz, Performance of a hybrid ED-NF membrane system for water recovery improvement via NOM fouling control, ACS EST Eng. 1 (10) (2021) 1420-1431. [14] S.K. Patel, P.M. Biesheuvel, M. Elimelech, Energy consumption of brackish water desalination: identifying the sweet spots for electrodialysis and reverse osmosis, ACS EST Eng. 1 (5) (2021) 851-864. [15] Z. Yang, L. Long, C.Y. Wu, C.Y. Tang, High permeance or high selectivity? Optimization of system-scale nanofiltration performance constrained by the upper bound, ACS EST Eng. 2 (3) (2022) 377-390. [16] F.B. Leitz, Electrodialysis for industrial water cleanup, Environ. Sci. Technol. 10 (2) (1976) 136-139. [17] M. Zafari, T. Kikhavani, S.N. Ashrafizadeh, Hybrid surface modification of an anion exchange membrane for selective separation of monovalent anions in the electrodialysis process, J. Environ. Chem. Eng. 10 (1) (2022) 107014. [18] Y. Zhao, C.J. Gao, B. Van der Bruggen, Technology-driven layer-by-layer assembly of a membrane for selective separation of monovalent anions and antifouling, Nanoscale 11 (5) (2019) 2264-2274. [19] H.X. Yang, N.U. Afsar, Q. Chen, X.L. Ge, X.Y. Li, L. Ge, T.W. Xu, Poly(alkyl-biphenyl pyridinium) anion exchange membranes with a hydrophobic side chain for mono-/divalent anion separation, Ind. Chem. Mater. 1 (1) (2023) 129-139. [20] X. Pang, X.H. Yu, Y.B. He, S. Dong, X.T. Zhao, J.F. Pan, R.N. Zhang, L.F. Liu, Preparation of monovalent cation perm-selective membranes by controlling surface hydration energy barrier, Sep. Purif. Technol. 270 (2021) 118768. [21] J.D. Ying, Y.Q. Lin, Y.R. Zhang, Y. Jin, H. Matsuyama, J.G. Yu, Layer-by-layer assembly of cation exchange membrane for highly efficient monovalent ion selectivity, Chem. Eng. J. 446 (2022) 137076. [22] X. Pang, Y.Y. Tao, Y.Q. Xu, J.F. Pan, J.N. Shen, C.J. Gao, Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers, J. Membr. Sci. 595 (2020) 117544. [23] L.X. Hou, B. Wu, D.B. Yu, S.M. Wang, M.A. Shehzad, R.Q. Fu, Z.M. Liu, Q.H. Li, Y.B. He, N.U. Afsar, C.X. Jiang, L. Ge, T.W. Xu, Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation, J. Membr. Sci. 557 (2018) 49-57. [24] A. Hussain, H.Y. Yan, N. Ul Afsar, H.Y. Wang, J.Y. Yan, C.X. Jiang, Y.M. Wang, T.W. Xu, Acid recovery from molybdenum metallurgical wastewater via selective electrodialysis and nanofiltration, Sep. Purif. Technol. 295 (2022) 121318. [25] L. Wang, M.H. Liu, J.H. Zhao, Y.L. Lei, N.W. Li, Comb-shaped sulfonated poly(ether ether ketone) as a cation exchange membrane for electrodialysis in acid recovery, J. Mater. Chem. A 6 (45) (2018) 22940-22950. [26] J.Y. Yan, H.Y. Wang, R. Fu, R.Q. Fu, R.R. Li, B.L. Chen, C.X. Jiang, L. Ge, Z.M. Liu, Y.M. Wang, T.W. Xu, Ion exchange membranes for acid recovery: diffusion dialysis (DD) or selective electrodialysis (SED)? Desalination 531 (2022) 115690. [27] J.M. Arana Juve, F.M.S. Christensen, Y. Wang, Z.S. Wei, Electrodialysis for metal removal and recovery: a review, Chem. Eng. J. 435 (2022) 134857. [28] L. Ge, L. Wu, B. Wu, G.H. Wang, T.W. Xu, Preparation of monovalent cation selective membranes through annealing treatment, J. Membr. Sci. 459 (2014) 217-222. [29] Y.B. He, L. Ge, Z.J. Ge, Z. Zhao, F.M. Sheng, X.H. Liu, X.L. Ge, Z.J. Yang, R.Q. Fu, Z.M. Liu, L. Wu, T.W. Xu, Monovalent cations permselective membranes with zwitterionic side chains, J. Membr. Sci. 563 (2018) 320-325. [30] N. Ul Afsar, X.L. Ge, Z. Zhao, A. Hussain, Y.B. He, L. Ge, T.W. Xu, Zwitterion membranes for selective cation separation via electrodialysis, Sep. Purif. Technol. 254 (2021) 117619. [31] Z.Z. Xu, H.Y. Tang, N.W. Li, Enhanced proton/iron permselectivity of sulfonated poly (ether ether ketone) membrane functionalized with basic pendant groups during electrodialysis, J. Membr. Sci. 610 (2020) 118227. [32] Y.R. Zhu, Q. Chen, Y. Zhou, X.Y. Li, L. Ge, T.W. Xu, Cation exchange membranes with bi-functional sites induced synergistic hydrophilic networks for selective proton transport, Adv. Funct. Mater. 33 (27) (2023) 2370169. [33] M. Sedighi, M.M. Behvand Usefi, A.F. Ismail, M. Ghasemi, Environmental sustainability and ions removal through electrodialysis desalination: operating conditions and process parameters, Desalination 549 (2023) 116319. [34] Y.M. Wang, X.L. Wang, H.Y. Yan, C.X. Jiang, L. Ge, T.W. Xu, Bipolar membrane electrodialysis for cleaner production of N-methylated glycine derivative amino acids, AIChE J. 66 (11) (2020) e17023. [35] S. Altin, E. Oztekin, A. Altin, Comparison of electrodialysis and reverse electrodialysis processes in the removal of Cu(II) from dilute solutions, Korean J. Chem. Eng. 34 (8) (2017) 2218-2224. [36] H.Q. Fan, Y.X. Huang, I.H. Billinge, S.M. Bannon, G.M. Geise, N.Y. Yip, Counterion mobility in ion-exchange membranes: spatial effect and valency-dependent electrostatic interaction, ACS EST Eng. 2 (7) (2022) 1274-1286. [37] C.R. Li, G.H. Wang, D.B. Yu, F.M. Sheng, M.A. Shehzad, T.Y. He, T.T. Xu, X.M. Ren, M. Cao, B. Wu, L. Ge, Cross-linked anion exchange membranes with hydrophobic side-chains for anion separation, J. Membr. Sci. 581 (2019) 150-157. [38] M. Tedesco, H.V.M. Hamelers, P.M. Biesheuvel, Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes, J. Membr. Sci. 510 (2016) 370-381. |