Chinese Journal of Chemical Engineering ›› 2024, Vol. 71 ›› Issue (7): 24-44.DOI: 10.1016/j.cjche.2024.03.021
Previous Articles Next Articles
Chunliang Liu, Jianhui Zhong, Ranran Wei, Jiuxu Ruan, Kaicong Wang, Zhaoyou Zhu, Yinglong Wang, Limei Zhong
Received:
2023-11-17
Revised:
2024-03-19
Online:
2024-08-30
Published:
2024-07-28
Contact:
Yinglong Wang,E-mail:yinglongw@126.com
Chunliang Liu, Jianhui Zhong, Ranran Wei, Jiuxu Ruan, Kaicong Wang, Zhaoyou Zhu, Yinglong Wang, Limei Zhong
通讯作者:
Yinglong Wang,E-mail:yinglongw@126.com
Chunliang Liu, Jianhui Zhong, Ranran Wei, Jiuxu Ruan, Kaicong Wang, Zhaoyou Zhu, Yinglong Wang, Limei Zhong. Process design and intensification of multicomponent azeotropes special distillation separation via molecular simulation and system optimization[J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 24-44.
Chunliang Liu, Jianhui Zhong, Ranran Wei, Jiuxu Ruan, Kaicong Wang, Zhaoyou Zhu, Yinglong Wang, Limei Zhong. Process design and intensification of multicomponent azeotropes special distillation separation via molecular simulation and system optimization[J]. 中国化学工程学报, 2024, 71(7): 24-44.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.03.021
[1] P. Wankat, Separation process engineering includes mass transfer analysis, Massachusetts. Pearson. Education. (2012) 1-2. [2] Y.L. Wang, P.Z. Cui, Y.H. Ma, Z. Zhang, Extractive distillation and pressure-swing distillation for THF/ethanol separation, J. Chem. Technol. Biotechnol. 90 (8) (2015) 1463-1472. [3] G. Modla, Separation of a chloroform-acetone-toluene mixture by pressure-swing batch distillation in different column configurations, Ind. Eng. Chem. Res. 50 (13) (2011) 8204-8215. [4] A.I. Papadopoulos, P. Linke, Multiobjective molecular design for integrated process-solvent systems synthesis, AlChE. J. 52 (3) (2006) 1057-1070. [5] J.Y.S. Lin, Molecular sieves for gas separation, Science 353 (6295) (2016) 121-122. [6] W.X. Wang, H.Y. Cheng, Q. Zhao, Y.Y. Wang, X. Li, Z.Y. Zhu, Y.L. Wang, F. Wang, P.Z. Cui, Economic, environmental, exergy (3E) evaluations of recovering n-propyl acetate and n-propanol from wastewater via distillation coupled pervaporation, Process. Saf. Environ. Prot. 180 (2023) 766-777. [7] J.L. Gu, X.Q. You, C.Y. Tao, J. Li, V. Gerbaud, Energy-saving reduced-pressure extractive distillation with heat integration for separating the biazeotropic ternary mixture tetrahydrofuran-methanol-water, Ind. Eng. Chem. Res. 57 (40) (2018) 13498-13510. [8] S. Kossack, K. Kraemer, R. Gani, W. Marquardt, A systematic synthesis framework for extractive distillation processes, Chem. Eng. Res. Des. 86 (7) (2008) 781-792. [9] H.C. Woo, Y.H. Kim, Solvent selection for extractive distillation using molecular simulation, AlChE. J. 65 (9) (2019) 16665. [10] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 532 (7600) (2016) 435-437. [11] X.G. Li, C.T. Cui, H. Li, X. Gao, Process synthesis and simultaneous optimization of extractive distillation system integrated with organic Rankine cycle and economizer for waste heat recovery, J. Taiwan Inst. Chem. Eng. 102 (2019) 61-72. [12] A.A. Kiss, R. Smith, Rethinking energy use in distillation processes for a more sustainable chemical industry, Energy 203 (2020) 117788. [13] C. Wang, Y. Zhuang, Y.C. Dong, C.C. Zhou, L. Zhang, J. Du, Conceptual design of the triple-column extractive distillation processes with single entrainer and double entrainer for separating the N-hexane/acetone/chloroform ternary multi-azeotropic mixture, Chem. Eng. Sci. 237 (2021) 116578. [14] H.H. Chen, M.K. Chen, B.C. Chen, I.L. Chien, Critical assessment of using an ionic liquid as entrainer via extractive distillation, Ind. Eng. Chem. Res. 56 (27) (2017) 7768-7782. [15] J.W. Lu, Q. Wang, Z.X. Zhang, J.H. Tang, M.F. Cui, X. Chen, Q. Liu, Z.Y. Fei, X. Qiao, Surrogate modeling-based multi-objective optimization for the integrated distillation processes, Chem. Eng. Process. Process. Intensif. 159 (2021) 108224. [16] J.G. Zhao, Z.Y. Zhu, Z.Y. Ma, F. Zhao, X. Yang, Y.L. Wang, P.Z. Cui, X. Li, J. Gao, Double-column batch stripper process based on heterogeneous property and control strategy for the efficient separation of a ternary mixture containing two minimum boiling azeotropes, Process. Saf. Environ. Prot. 148 (2021) 1123-1132. [17] Z.Y. Zhu, H.Q. Qi, Y.Y. Shen, X.M. Qiu, H.R. Zhang, J.G. Qi, J.W. Yang, L. Wang, Y.L. Wang, Y.X. Ma, J. Gao, Energy-saving investigation of organic material recovery from wastewater via thermal coupling extractive distillation combined with heat pump based on thermoeconomic and environmental analysis, Process. Saf. Environ. Prot. 146 (2021) 441-450. [18] P. Krishna, B. Desikan, C.S. Rao, Control and dynamic optimization of middle vessel batch distillation column for the separation of ethanol/propanol/butanol mixture, Chem. Eng. Res. Des. 176 (2021) 267-278. [19] I.N. Oksal, D.B. Kaymak, Dynamic controllability comparison of reactive distillation columns with single and double reactive sections for two-stage consecutive reactions, Chem. Eng. Res. Des. 129 (2018) 391-402. [20] H. Hernandez-Escoto, A.M. Zavala-Guzman, R. Maya-Yescas, J.M. Zamudio-Lara, S. Hernandez, Operability assessment and systematic PI control of a class of Extractive Dividing Wall Distillation Columns: Case of ethanol dehydration, Chem. Eng. Res. Des. 187 (2022) 84-92. [21] M. Johnson, M. Moradi, PID control. Springer. (2005). [22] W.L. Luyben, Control of a heat-integrated pressure-swing distillation process for the separation of a maximum-boiling azeotrope, Ind. Eng. Chem. Res. 53 (46) (2014) 18042-18053. [23] Z.S. Zhang, Y. Wang, M.H. Zhang, C. Guang, M. Li, J. Gao, Energy-saving investigation of pressure-swing distillation strengthening configurations for benzene/isobutanol binary azeotrope, Sep. Purif. Technol. 296 (2022) 121381. [24] J.W. Yang, Z.K. Hou, Y. Dai, K. Ma, P.Z. Cui, Y.L. Wang, Z.Y. Zhu, J. Gao, Dynamic control analysis of interconnected pressure-swing distillation process with and without heat integration for separating azeotrope, Chin. J. Chem. Eng. 29 (2021) 67-76. [25] F. Zhao, Z.F. Xu, J.G. Zhao, J. Wang, M.Y. Hu, X. Li, Z.Y. Zhu, P.Z. Cui, Y.L. Wang, Y.X. Ma, Process design and multi-objective optimization for separation of ternary mixtures with double azeotropes via integrated quasi-continuous pressure-swing batch distillation, Sep. Purif. Technol. 276 (2021) 119288. [26] Z.S. Zhang, Q.J. Zhang, G.J. Li, M.L. Liu, J. Gao, Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation, Chin. J. Chem. Eng. 24 (11) (2016) 1584-1599. [27] Y.L. Wang, Z. Zhang, D.F. Xu, W. Liu, Z.Y. Zhu, Design and control of pressure-swing distillation for azeotropes with different types of boiling behavior at different pressures, J. Process. Contr. 42 (2016) 59-76. [28] X. Li, X. Yang, S. Wang, J.W. Yang, L.L. Wang, Z.Y. Zhu, P.Z. Cui, Y.L. Wang, J. Gao, Separation of ternary mixture with double azeotropic system by a pressure-swing batch distillation integrated with quasi-continuous process, Process. Saf. Environ. Prot. 128 (2019) 85-94. [29] C. Guang, X.X. Zhao, Z.S. Zhang, J. Gao, M. Li, Optimal design and performance enhancement of heteroazeotropic and pressure-swing coupling distillation for downstream isopropanol separation, Sep. Purif. Technol. 242 (2020) 116836. [30] X.Q. You, T.J. Ma, T. Qiu, Design and optimization of sustainable pressure swing distillation for minimum-boiling azeotrope separation, Ind. Eng. Chem. Res. 58 (47) (2019) 21659-21670. [31] J.L. Gu, S. Lu, F.M. Shi, X.J. Wang, X.Q. You, Economic and environmental evaluation of heat-integrated pressure-swing distillation by multiobjective optimization, Ind. Eng. Chem. Res. 61 (25) (2022) 9004-9014. [32] F. Duanmu, D.N. Chia, E. Sorensen, A shortcut design method for complex distillation structures, Chem. Eng. Res. Des. 180 (2022) 346-368. [33] S.K. Wasylkiewicz, L.C. Kobylka, F.J.L. Castillo, Optimal design of complex azeotropic distillation columns, Chem. Eng. J. 79 (3) (2000) 219-227. [34] S. Kossack, K. Kraemer, W. Marquardt, Efficient optimization-based design of distillation columns for homogenous azeotropic mixtures, Ind. Eng. Chem. Res. 45 (25) (2006) 8492-8502. [35] Q. Yang, W. Xu, J. Li, Z. Wang, H. Xu, M. Zhou, Y. Wang, X. Li, L. Zhong, P. Cui, Molecular mechanism of efficient separation of isopropyl alcohol and isooctane by extractive distillation, Chem. Eng. Res. Des. 204 (2024) 269-281. [36] B. Shan, S. Wang, Q. Xu, Y. Wang, P. Cui, F. Zhang, Design and multi-objective optimization of hybrid extractive distillation process for separating the toluene-methanol-water ternary azeotrope, Sep. Purif. Technol. 336 (2024) 126335. [37] J.H. Zhong, H.Y. Cheng, Y.S. Dai, Y.Y. Jiao, K.C. Wang, L.L. Xin, Y. Zhang, Z.Y. Zhu, P.Z. Cui, Y.Y. Lu, Y.L. Wang, Design and multiple performance evaluation of green sustainable process for azeotropes separation via extractive distillation, ACS Sustainable Chem. Eng. 11 (48) (2023) 16849-16881. [38] A.V. Timoshenko, E.A. Anokhina, A.V. Morgunov, D.G. Rudakov, Application of the partially thermally coupled distillation flowsheets for the extractive distillation of ternary azeotropic mixtures, Chem. Eng. Res. Des. 104 (2015) 139-155. [39] L.Q. Yan, J.L. Li, X. Jian, X.H. Li, J.Y. Zhang, Q. Ye, Evaluation on the separation effect and extractant recovery efficiency of extractive distillation for separating ethyl acetate/methanol with ionic liquids as extractants, Process. Saf. Environ. Prot. 167 (2022) 343-355. [40] X. Jian, J.L. Li, Q. Ye, L.Q. Yan, X.H. Li, J.Y. Zhang, Process synthesis of intensified extractive distillation for recycling organics material from wastewater, Sep. Purif. Technol. 303 (2022) 122172. [41] H.E. Roscoe, XVIII.-on the composition of the aqueous acids of constant boiling point, Q. J. Chem. Soc. 13 (2) (1861) 146-164. [42] H.E. Roscoe, W. Dittmar, XV.-on the absorption of hydrochloric acid and ammonia in water, Q. J. Chem. Soc. 12 (1) (1860) 128-151. [43] W.K Lewis, Dehydrating alcohol and the like, US Pat., 1,676,700 (1928). [44] W.L. Luyben, Comparison of pressure-swing and extractive-distillation methods for methanol-recovery systems in the TAME reactive-distillation process, Ind. Eng. Chem. Res. 44 (15) (2005) 5715-5725. [45] W.L. Luyben, Distillation column pressure selection, Sep. Purif. Technol. 168 (2016) 62-67. [46] W.L. Luyben, Design and control of a pressure-swing distillation process with vapor recompression, Chem. Eng. Process. Process. Intensif. 123 (2018) 174-184. [47] A.M. Fulgueras, J. Poudel, D.S. Kim, J. Cho, Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine, Korean J. Chem. Eng. 33 (1) (2016) 46-56. [48] G. Modla, P. Lang, Separation of a ternary homoazeotropic mixture by pressure swing batch distillation, Hung. J. Ind. Chem. 1-2 (2008). [49] Z.Y. Zhu, D.F. Xu, H. Jia, Y.T. Zhao, Y.L. Wang, Heat integration and control of a triple-column pressure-swing distillation process, Ind. Eng. Chem. Res. 56 (8) (2017) 2150-2167. [50] M. Li, Y. Ma, X. Zhang, T. Zhao, Z. Zhu, Y. Wang, Triple column pressure-swing distillation for ternary mixture of methyl ethyl ketone/isopropanol/ethanol, Chem. Eng. Trans. 61 (2017) 649-654. [51] A. Yang, W.F. Shen, S.A. Wei, L.C. Dong, J. Li, V. Gerbaud, Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes, AlChE. J. 65 (4) (2019) 1281-1293. [52] C. Wang, Z.S. Zhang, X.K. Zhang, C. Guang, J. Gao, Comparison of pressure-swing distillation with or without crossing curved-boundary for separating a multiazeotropic ternary mixture, Sep. Purif. Technol. 220 (2019) 114-125. [53] W.L. Luyben, Methanol/trimethoxysilane azeotrope separation using pressure-swing distillation, Ind. Eng. Chem. Res. 53 (13) (2014) 5590-5597. [54] P. Lang, H. Yatim, P. Moszkowicz, M. Otterbein, Batch extractive distillation under constant reflux ratio, Comput. Chem. Eng. 18 (11-12) (1994) 1057-1069. [55] Z. Lei, C. Li, B. Chen, Extractive distillation: A review, Sep. Purif. Technol. 32 (2003) 121-213. [56] P. Cui, F. Zhao, X. Liu, Y. Shen, Y. Wang, Sustainable wastewater treatment via pv-distillation hybrid process for the separation of ethyl acetate/isopropanol/water, Sep. Purif. Technol. 257 (2021) 117919. [57] H.R. Zhang, S. Wang, J.X. Tang, N.N. Li, Y.N. Li, P.Z. Cui, Y.L. Wang, S.Q. Zheng, Z.Y. Zhu, Y.X. Ma, Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis, Energy 229 (2021) 120774. [58] J. Javaloyes-Anton, R. Ruiz-Femenia, J.A. Caballero, Rigorous design of complex distillation columns using process simulators and the particle swarm optimization algorithm, Ind. Eng. Chem. Res. 52 (44) (2013) 15621-15634. [59] Z.Y. Zhu, G.X. Li, Y. Dai, P.Z. Cui, D.M. Xu, Y.L. Wang, Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic method, Front. Chem. Sci. Eng. 14 (5) (2020) 824-833. [60] Z.G. Zhang, D.H. Huang, M. Lv, P. Jia, D.Z. Sun, W.X. Li, Entrainer selection for separating tetrahydrofuran/water azeotropic mixture by extractive distillation, Sep. Purif. Technol. 122 (2014) 73-77. [61] J. Pla-Franco, E. Lladosa, S. Loras, J.B. Monton, Approach to the 1-propanol dehydration using an extractive distillation process with ethylene glycol, Chem. Eng. Process. Process. Intensif. 91 (2015) 121-129. [62] W.L. Luyben, Control comparison of conventional and thermally coupled ternary extractive distillation processes, Chem. Eng. Res. Des. 106 (2016) 253-262. [63] M. Ayuso, A. Canada-Barcala, M. Larriba, P. Navarro, N. Delgado-Mellado, J. Garcia, F. Rodriguez, Enhanced separation of benzene and cyclohexane by homogeneous extractive distillation using ionic liquids as entrainers, Sep. Purif. Technol. 240 (2020) 116583. [64] J.E. Sosa, J.M.M. Araujo, E. Amado-Gonzalez, A.B. Pereiro, Separation of azeotropic mixtures using protic ionic liquids as extraction solvents, J. Mol. Liq. 297 (2020) 111733. [65] Q. Pan, X.Y. Shang, S.T. Ma, J. Li, Y.F. Song, M.Y. Sun, J.Y. Liu, L.Y. Sun, Control comparison of extractive distillation configurations for separating ethyl acetate-ethanol-water ternary mixture using ionic liquids as entrainer, Sep. Purif. Technol. 236 (2020) 116290. [66] Z.G. Lei, C.N. Dai, J.Q. Zhu, B.H. Chen, Extractive distillation with ionic liquids: A review, AlChE. J. 60 (9) (2014) 3312-3329. [67] Z.Y. Zhu, Y. Ri, H. Jia, X. Li, Y. Wang, Y.L. Wang, Process evaluation on the separation of ethyl acetate and ethanol using extractive distillation with ionic liquid, Sep. Purif. Technol. 181 (2017) 44-52. [68] Z.S. Zhang, X.X. Zhao, X.Y. Zhu, M. Li, Z. Ma, J. Gao, Energy-saving exploration and optimization of methyl alcohol-Methyl ethyl ketone-Tertbutyl alcohol separation by extractive dividing-wall distillation with ionic liquid as extractant, Sep. Purif. Technol. 272 (2021) 118886. [69] I. Diaz, J. Palomar, M. Rodriguez, J. de Riva, V. Ferro, E.J. Gonzalez, Ionic liquids as entrainers for the separation of aromatic-aliphatic hydrocarbon mixtures by extractive distillation, Chem. Eng. Res. Des. 115 (2016) 382-393. [70] W.L. Luyben, I.L. Chien, Design and Control of Distillation Systems for Separating Azeotropes. John Wiley & Sons, Inc., 2010. [71] P.E. Porter, C.H. Deal, F.H. Stross, The determination of partition coefficients from gas-liquid partition chromatography, J. Am. Chem. Soc. 78 (13) (1956) 2999-3006. [72] G.J. Pierotti, C.H. Deal, E.L. Derr, P.E. Porter, Solvent effects in gas-liquid partition chromatography, J. Am. Chem. Soc. 78 (13) (1956) 2989-2998. [73] S.R. Sun, L.P. Lu, A. Yang, S.A. Wei, W.F. Shen, Extractive distillation: Advances in conceptual design, solvent selection, and separation strategies, Chin. J. Chem. Eng. 27 (6) (2019) 1247-1256. [74] B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system, J. Chem. Phys. 27 (5) (1957) 1208-1209. [75] A. Rahman, F.H. Stillinger, Molecular dynamics study of liquid water, J. Chem. Phys. 55 (7) (1971) 3336-3359. [76] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52 (12) (1981) 7182-7190. [77] R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55 (22) (1985) 2471-2474. [78] A. Klamt, G. Schuurmann, COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc., Perkin Trans. 2 (5) (1993) 799-805. [79] M. Larriba, J. de Riva, P. Navarro, D. Moreno, N. Delgado-Mellado, J. Garcia, V.R. Ferro, F. Rodriguez, J. Palomar, COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the{[4empy][NTf2]+[emim][DCA]}ionic liquid mixture, Sep. Purif. Technol. 190 (2018) 211-227. [80] D. Moreno, V.R. Ferro, J. de Riva, R. Santiago, C. Moya, M. Larriba, J. Palomar, Absorption refrigeration cycles based on ionic liquids: Refrigerant/absorbent selection by thermodynamic and process analysis, Appl. Energy 213 (2018) 179-194. [81] Z. Song, C.Y. Zhang, Z.W. Qi, T. Zhou, K. Sundmacher, Computer-aided design of ionic liquids as solvents for extractive desulfurization, AlChE. J. 64 (3) (2018) 1013-1025. [82] Y.Q. Zhang, Q.Q. Zhang, H. Xin, M.H. Lv, Z.G. Zhang, COSMO-RS prediction, liquid-liquid equilibrium experiment and quantum chemistry calculation for the separation of n-butanol and n-heptane system using ionic liquids, J. Chem. Thermodyn. 167 (2022) 106719. [83] S. Xu, X.B. Cui, Y.X. Xing, J.H. Di, X.M. Zhang, J. He, H.S. Feng, Computer-aided molecular design of double-salt ionic liquid solvents for extractive distillation with the COSMO-SAC and genetic algorithm, Ind. Eng. Chem. Res. 60 (49) (2021) 18086-18093. [84] S.S. He, W.Y. Fan, H.W. Huang, J. Gao, D.M. Xu, Y.X. Ma, L.Z. Zhang, Y.L. Wang, Separation of the azeotropic mixture methanol and toluene using extractive distillation: Entrainer determination, vapor-liquid equilibrium measurement, and modeling, ACS Omega 6 (50) (2021) 34736-34743. [85] P.V. Coveney, S.Z. Wan, On the calculation of equilibrium thermodynamic properties from molecular dynamics, Phys. Chem. Chem. Phys. 18 (44) (2016) 30236-30240. [86] W.X. Zhang, Z.R. Chen, Y.Y. Shen, G.X. Li, Y. Dai, J.G. Qi, Y.X. Ma, S. Yang, Y.L. Wang, Molecular mechanism and extraction performance evaluation for separation of methanol and n-hexane via ionic liquids as extractant, ACS Sustainable Chem. Eng. 8 (23) (2020) 8700-8712. [87] J. Hou, G.L. Sun, J.C. Liu, X. Gao, X.Y. Zhang, Z. Lu, Liquid/vapor interface of dimethyl carbonate-methanol binary mixtures investigated by sum frequency generation vibrational spectroscopy and molecular dynamics simulation, J. Phys. Chem. B 124 (20) (2020) 4211-4221. [88] M.F. Malone, R.S. Huss, M.F. Doherty, Green chemical engineering aspects of reactive distillation, Environ. Sci. Technol. 37 (23) (2003) 5325-5329. [89] A.A. Kiss, Advanced distillation technologies: Design, control and applications, Adv. Distill. Technol. Des. Contr. Appl. (2013) 111-183. [90] Y.R. Zhang, T.W. Wu, I.L. Chien, Intensified hybrid reactive-extractive distillation process for the separation of water-containing ternary mixtures, Sep. Purif. Technol. 279 (2021) 119712. [91] C. Wang, Y. Zhuang, Y.C. Dong, L.L. Liu, L. Zhang, J. Du, Conceptual design of sustainable extractive distillation processes combining preconcentration and extractive distillation functions for separating ternary multi-azeotropic mixture, Chem. Eng. Sci. 263 (2022) 118088. [92] Y.D. Li, T.Y. Sun, Q. Ye, J.L. Li, Y.G. Xu, X. Jian, Application of an energy-efficient process with reactive coupling pressure-swing distillation for recycling organic materials from wastewater, Ind. Eng. Chem. Res. 60 (28) (2021) 10338-10353. [93] A. Yang, Z.Y. Kong, J. Sunarso, Y. Su, Q. Wang, S.S. Zhu, Insights on sustainable separation of ternary azeotropic mixture tetrahydrofuran/ethyl acetate/water using hybrid vapor recompression assisted side-stream extractive distillation, Sep. Purif. Technol. 290 (2022) 120884. [94] B.M. Shan, D.F. Sun, Q. Zheng, F.K. Zhang, Y.L. Wang, Z.Y. Zhu, Dynamic control of the pressure-swing distillation process for THF/ethanol/water separation with and without thermal integration, Sep. Purif. Technol. 268 (2021) 118686. [95] B. Kiran, A.K. Jana, Thermal integration of vapor recompression in a heat-integrated distillation: Impact of multiple intermediate reboilers, Chem. Eng. Res. Des. 114 (2016) 171-179. [96] W.Z. An, F.J. Yu, F.L. Dong, Y.D. Hu, Simulated annealing approach to the optimal synthesis of distillation column with intermediate heat exchangers, Chin. J. Chem. Eng. 16 (1) (2008) 30-35. [97] Y.N. Li, Q. Zhao, T.X. Liu, K.X. Yin, Y.S. Dai, Z.Y. Zhu, P.Z. Cui, Y.L. Wang, L.M. Zhong, Economic, environmental, and exergy analysis of an efficient separation process for recovering low-carbon alcohol from wastewater, J. Clean. Prod. 365 (2022) 132733. [98] J. Qi, J.L. Tang, Q.J. Zhang, Y.G. Wang, H.D. Chen, H.K. Zhao, L.Q. Zhang, Heat-integrated azeotropic distillation and extractive distillation for the separation of heterogeneous ternary azeotropes of diisopropyl ether/isopropyl alcohol/water, Ind. Eng. Chem. Res. 58 (45) (2019) 20734-20745. [99] C. Duan, C.L. Li, Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation, Energy 263 (2023) 125821. [100] Z.S. Zhang, X.X. Zhao, Y. Wang, Y.X. Ma, G.J. Li, Eco-efficient heat-integrated extractive distillation process using ionic liquid as entrainer for ethyl acetate-isopropyl alcohol-water mixture, Sep. Purif. Technol. 287 (2022) 120491. [101] M.A. Schultz, D.G. Stewart, J.M. Harris, S.P. Rosenblum, M.S. Shakur, D.E. O’Brien, Reduce costs with dividing-wall columns, Chem. Eng. Prog. 98 (5) (2002) 64-71. [102] F. Ennenbach, B. Kolbe, U. Ranke, Divided wall columns a novel distil-lotion concept, Process Technology Quarterly 5 (2000) 97-103. [103] G. Madenoor Ramapriya, M. Tawarmalani, R. Agrawal, A systematic method to synthesize all dividing wall columns for n-component separation: Part I, AlChE. J. 64 (2) (2018) 649-659. [104] M.Q. Chen, N. Yu, L. Cong, J.X. Wang, M.Y. Zhu, L.Y. Sun, Design and control of a heat pump-assisted azeotropic dividing wall column for EDA/water separation, Ind. Eng. Chem. Res. 56 (34) (2017) 9770-9777. [105] B. Kolbe, S. Wenzel, Novel distillation concepts using one-shell columns, Chem. Eng. Process. Process. Intensif. 43 (3) (2004) 339-346. [106] G. Spencer, F.J. Ruiz, Considerring dividing wall distillation to separate solvents, Hydrocarb. Process. 84 (2005) 90-94. [107] R. Agrawal, Processes for multicomponent separation, US Pat., 6286335 (2001). [108] B. Suphanit, A. Bischert, P. Narataruksa, Exergy loss analysis of heat transfer across the wall of the dividing-wall distillation column, Energy 32 (11) (2007) 2121-2134. [109] G. Kaibel, Distillation columns with vertical partitions, Chem. Eng. Technol. 10 (1) (1987) 92-98. [110] S. Sander, C. Flisch, E. Geissler, H. Schoenmakers, O. Ryll, H. Hasse, Methyl acetate hydrolysis in a reactive divided wall column, Chem. Eng. Res. Des. 85 (1) (2007) 149-154. [111] A.A. Kiss, D.J.P C. Suszwalak, Innovative dimethyl ether synthesis in a reactive dividing-wall column, Comput. Chem. Eng. 38 (2012) 74-81. [112] D.Y. Aqar, N. Rahmanian, I.M. Mujtaba, Feasibility of novel integrated dividing-wall batch reactive distillation processes for the synthesis of methyl decanoate, Sep. Purif. Technol. 202 (2018) 200-215. [113] H.H. Zhang, P. Lu, Z. Ding, Y.B. Li, H. Li, C. Hua, Z. Wu, Design optimization and control of dividing wall column for purification of trichlorosilane, Chem. Eng. Sci. 257 (2022) 117716. [114] H. Yeomans, I.E. Grossmann, Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models, Ind. Eng. Chem. Res. 39 (11) (2000) 4326-4335. [115] M. Aurangzeb, A.K. Jana, A novel heat integrated extractive dividing wall column for ethanol dehydration, Ind. Eng. Chem. Res. 58 (21) (2019) 9109-9117. [116] S. Sharma, D.S. Patle, A.P. Gadhamsetti, S. Pandit, D. Manca, N.G S, Intensification and performance assessment of the formic acid production process through a dividing wall reactive distillation column with vapor recompression, Chem. Eng. Process. Process. Intensif. 123 (2018) 204-213. [117] T. Waltermann, S. Sibbing, M. Skiborowski, Optimization-based design of dividing wall columns with extended and multiple dividing walls for three- and four-product separations, Chem. Eng. Process. Process. Intensif. 146 (2019) 107688. [118] A.A. Kiss, S.J. Flores Landaeta, C.A. Infante Ferreira, Towards energy efficient distillation technologies-Making the right choice, Energy 47 (1) (2012) 531-542. [119] V. Plesu, A.E. Bonet Ruiz, J. Bonet, J. Llorens, Simple equation for suitability of heat pump use in distillation. Computer Aided Chemical Engineering. Amsterdam: Elsevier, (2014) 1327-1332. [120] C. Fu, T. Gundersen, Recuperative vapor recompression heat pumps in cryogenic air separation processes, Energy 59 (2013) 708-718. [121] V. Kumar, B. Kiran, A.K. Jana, A.N. Samanta, A novel multistage vapor recompression reactive distillation system with intermediate reboilers, AlChE. J. 59 (3) (2013) 761-771. [122] M.B. Yang, X. Feng, G.L. Liu, Heat integration of heat pump assisted distillation into the overall process, Appl. Energy 162 (2016) 1-10. [123] N. Felbab, B. Patel, M.M. El-Halwagi, D. Hildebrandt, D. Glasser, Vapor recompression for efficient distillation. 1. A new synthesis perspective on standard configurations, AlChE. J. 59 (8) (2013) 2977-2992. [124] E. Diez, P. Langston, G. Ovejero, M.D. Romero, Economic feasibility of heat pumps in distillation to reduce energy use, Appl. Therm. Eng. 29 (5-6) (2009) 1216-1223. [125] L. Liang, D. Han, R. Ma, T. Peng, Treatment of high-concentration wastewater using double-effect mechanical vapor recompression, Desalination 314 (2013) 139-146. [126] X. Li, X.L. Geng, P.Z. Cui, J.W. Yang, Z.Y. Zhu, Y.L. Wang, D.M. Xu, Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology, Appl. Therm. Eng. 154 (2019) 519-529. [127] Y. Li, L. Wang, M. Zhu, W.Q. Wang, Optimization study of distillation column based on Type I absorption heat pump, Appl. Therm. Eng. 116 (2017) 33-42. [128] H. Shahandeh, M. Jafari, N. Kasiri, J. Ivakpour, Economic optimization of heat pump-assisted distillation columns inmethanol-water separation, Energy 80 (2015) 496-508. [129] Z.Y. Zhu, X.Z. Liu, Y.J. Cao, S.S. Liang, Y.L. Wang, Controllability of separate heat pump distillation for separating isopropanol-chlorobenzene mixture, Korean J. Chem. Eng. 34 (3) (2017) 866-875. [130] B. Sulgan, J. Labovsky, M. Variny, Z. Labovska, Multi-objective assessment of heat pump-assisted ethyl acetate production, Processes 9 (8) (2021) 1380. [131] A. Kazemi, V. Faizi, A. Mehrabani-Zeinabad, M. Hosseini, Evaluation of the performance of heat pump-assisted distillation of an ethanol-water mixture, Sep. Sci. Technol. 52 (8) (2017) 1387-1396. [132] S.R. Pandit, A.K. Jana, Transforming conventional distillation sequence to dividing wall column: Minimizing cost, energy usage and environmental impact through genetic algorithm, Sep. Purif. Technol. 297 (2022) 121437. [133] J.A. Weinfeld, R.B. Eldridge, S. Owens, Evaluation of the aldol condensation of propionaldehyde as a reactive dividing wall column test system, Ind. Eng. Chem. Res. 61 (23) (2022) 8220-8232. [134] M. Aurangzeb, A.K. Jana, Pressure-swing dividing wall column with multiple binary azeotropes: Improving energy efficiency and cost savings through vapor recompression, Ind. Eng. Chem. Res. 57 (11) (2018) 4019-4032. [135] S. Wang, Y. Dai, Z.Y. Ma, H.Q. Qi, Z.R. Chen, Y.Y. Shen, J.W. Yang, P.Z. Cui, Y.L. Wang, Z.Y. Zhu, J. Gao, Application of energy-saving hybrid distillation-pervaporation process for recycling organics from wastewater based on thermoeconomic and environmental analysis, J. Clean. Prod. 294 (2021) 126297. [136] S.J. Yang, Q.J. Zhang, Y.G. Ma, X.G. Yuan, A.W. Zeng, Eco-efficient self-heat recuperative vapor recompression-assisted side-stream pressure-swing distillation arrangement for separating a minimum-boiling azeotrope, Ind. Eng. Chem. Res. 59 (29) (2020) 13190-13203. [137] G. Karami, M. Amidpour, B.H. Sheibani, G.R. Salehi, Distillation column controllability analysis through heat pump integration, Chem. Eng. Process. Process. Intensif. 97 (2015) 23-37. [138] J.Z. Ren, Specialty grand challenge: Multi-criteria decision making for better sustainability, Front. Sustain. 1 (2020) 2. [139] Y.L. Wang, G.L. Bu, X.L. Geng, Z.Y. Zhu, P.Z. Cui, Z.W. Liao, Design optimization and operating pressure effects in the separation of acetonitrile/methanol/water mixture by ternary extractive distillation, J. Clean. Prod. 218 (2019) 212-224. [140] J. Li, R.C. Li, H. Zhou, X. Yang, Z.H. Ma, L.Y. Sun, N. Zhang, Energy-saving ionic liquid-based extractive distillation configurations for separating ternary azeotropic system of tetrahydrofuran/ethanol/water, Ind. Eng. Chem. Res. 58 (36) (2019) 16858-16868. [141] C. Wang, C. Guang, Y. Cui, Z.S. Zhang, X.K. Zhang, Separation of a ternary mixture with multiple azeotropes via pressure-swing distillation, J. Chem. Technol. Biotechnol. 94 (6) (2019) 2023-2033. [142] X. Zhang, X. Li, G.X. Li, Z.Y. Zhu, Y.L. Wang, D.M. Xu, Determination of an optimum entrainer for extractive distillation based on an isovolatility curve at different pressures, Sep. Purif. Technol. 201 (2018) 79-95. [143] L.T. Arashiro, N. Montero, I. Ferrer, F.G. Acien, C. Gomez, M. Garfi, Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery, Sci. Total Environ. 622-623 (2018) 1118-1130. [144] K. Deb, K. Deb, Multi-objective optimization. Burke E, Kendall G, Search Methodologies. Boston, MA: Springer, 2014: 403-449. [145] A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Syst. Saf. 91 (9) (2006) 992-1007. [146] M. Yong-Jie, Y. Wen-Xia, Research progress of genetic algorithm, Application Research of Computer 4 (2012) 1201-1206. [147] C.R. Houck, J. Joines, M.G. Kay, A genetic algorithm for function optimization: A MATLAB implementation, Ncsu-ietr. 95 (1995) 1-10. [148] K.M. Hamdia, X.Y. Zhuang, T. Rabczuk, An efficient optimization approach for designing machine learning models based on genetic algorithm, Neural Comput. Appl. 33 (6) (2021) 1923-1933. [149] N. Srinivas, K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput. 2 (3) (1994) 221-248. [150] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197. [151] X.Q. You, I. Rodriguez-Donis, V. Gerbaud, Investigation of separation efficiency indicator for the optimization of the acetone-methanol extractive distillation with water, Ind. Eng. Chem. Res. 54 (43) (2015) 10863-10875. [152] X. Qian, K. Huang, H. Chen, Y. Yuan, L. Zhang, Synthesis and design of dividing-wall distillation column based on particle swarm optimization, Chem. Ind. Eng. Pro. 40 (2021) 5967-5972. [153] J.K. Rajesh, S.K. Gupta, G.P. Rangaiah, A.K. Ray, Multi-objective optimization of industrial hydrogen plants, Chem. Eng. Sci. 56 (3) (2001) 999-1010. [154] K.F. Koledina, S.N. Koledin, A.P. Karpenko, I.M. Gubaydullin, M.K. Vovdenko, Multi-objective optimization of chemical reaction conditions based on a kinetic model, J. Math. Chem. 57 (2) (2019) 484-493. [155] H.S. Bamufleh, J.M. Ponce-Ortega, M.M. El-Halwagi, Multi-objective optimization of process cogeneration systems with economic, environmental, and social tradeoffs, Clean Technol. Environ. Policy 15 (1) (2013) 185-197. [156] X.Q. You, J.L. Gu, V. Gerbaud, C.J. Peng, H.L. Liu, Optimization of pre-concentration, entrainer recycle and pressure selection for the extractive distillation of acetonitrile-water with ethylene glycol, Chem. Eng. Sci. 177 (2018) 354-368. [157] T. Shi, W. Chun, A. Yang, Y. Su, S.M. Jin, J.Z. Ren, W.F. Shen, Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope, Chem. Eng. Sci. 215 (2020) 115373. [158] Y. Su, A. Yang, S.M. Jin, W.F. Shen, P.Z. Cui, J.Z. Ren, Investigation on ternary system tetrahydrofuran/ethanol/water with three azeotropes separation via the combination of reactive and extractive distillation, J. Clean. Prod. 273 (2020) 123145. [159] L. Jin, X.D. Zhang, C.T. Cui, Z.J. Xi, J.S. Sun, Simultaneous process parameters and heat integration optimization for industrial organosilicon production, Sep. Purif. Technol. 265 (2021) 118520. [160] N. Medina-Herrera, A. Jimenez-Gutierrez, L.A. Ricardez-Sandoval, S. Tututi-Avila, An approach for dynamic transitions in multiproduct reactive distillation columns, Chem. Eng. Process. Process. Intensif. 153 (2020) 107967. [161] Y.L. Wang, G.L. Bu, Y.K. Wang, T.R. Zhao, Z. Zhang, Z.Y. Zhu, Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process, Comput. Chem. Eng. 95 (2016) 97-107. [162] Y. Xiong, Y.D. Jing, T.W. Chen, Sensitivity analysis and sensitivity-based design for linear alarm filters, Contr. Eng. Pract. 70 (2018) 29-39. [163] C. Wang, Y. Zhuang, Y.C. Dong, L. Zhang, L.L. Liu, J. Du, Design and control analysis of the side-stream extractive distillation column with low concentration intermediate-boiling entrainer, Chem. Eng. Sci. 247 (2022) 116915. [164] P. Seferlis, J. Grievink, Optimal design and sensitivity analysis of reactive distillation units using collocation models, Ind. Eng. Chem. Res. 40 (7) (2001) 1673-1685. [165] D.R. Pompeu, E.M. Silva, H. Rogez, Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using Response Surface Methodology, Bioresour. Technol. 100 (23) (2009) 6076-6082. [166] G. Sharmila, C. Muthukumaran, E. Suriya, R. Muppidathi Keerthana, M. Kamatchi, N.M. Kumar, T. Anbarasan, J. Jeyanthi, Ultrasound aided extraction of yellow pigment from Tecoma castanifolia floral petals: Optimization by response surface method and evaluation of the antioxidant activity, Ind. Crops Prod. 130 (2019) 467-477. [167] E. Jahanshahi, D. Krishnamoorthy, A. Codas, B. Foss, S. Skogestad, Plantwide control of an oil production network, Comput. Chem. Eng. 136 (2020) 106765. [168] H. Ahmadian Behrooz, Robust design and control of extractive distillation processes under feed disturbances, Ind. Eng. Chem. Res. 56 (15) (2017) 4446-4462. [169] T.G. das Neves, W.B. Ramos, G.W. de Farias Neto, R.P. Brito, Intelligent control system for extractive distillation columns, Korean J. Chem. Eng. 35 (4) (2018) 826-834. [170] G. Baghmisheh, M. Shahrokhi, R. Bozorgmehri, Comparison of dynamic and static performances of a quaternary distillation sequence, Ind. Eng. Chem. Res. 49 (13) (2010) 6135-6143. [171] K.H. Ang, G. Chong, Y. Li, PID control system analysis, design, and technology, IEEE Trans. Contr. Syst. Technol. 13 (4) (2005) 559-576. [172] C. Smith, A. Corripio, Principles and practices of automatic process control, John wiley& Sons. (2005). [173] G.W.M. Coppus, S.L. Shah, R.K. Wood, Robust multivariable control of a binary distillation column, IEE Proc. D Contr. Theory Appl. 130 (5) (1983) 201. [174] Y.X. Ma, P.Z. Cui, Y.K. Wang, Z.Y. Zhu, Y.L. Wang, J. Gao, A review of extractive distillation from an azeotropic phenomenon for dynamic control, Chin. J. Chem. Eng. 27 (7) (2019) 1510-1522. [175] M.I.A. Mutalib, R. Smith, Operation and control of dividing wall distillation columns, Chem. Eng. Res. Des. 76 (3) (1998) 308-318. [176] K. Ma, M.X. Yu, Y. Dai, Y.X. Ma, J. Gao, P.Z. Cui, Y.L. Wang, Control of an energy-saving side-stream extractive distillation process with different disturbance conditions, Sep. Purif. Technol. 210 (2019) 195-208. [177] Q.J. Zhang, A.W. Zeng, X.G. Yuan, Y.G. Ma, Control comparison of conventional and thermally coupled ternary extractive distillation processes with recycle splitting using a mixed entrainer as separating agent, Sep. Purif. Technol. 224 (2019) 70-84. [178] H. Zheng, Y. Li, C.J. Xu, Control of highly heat-integrated energy-efficient extractive distillation processes, Ind. Eng. Chem. Res. 56 (19) (2017) 5618-5635. [179] Y. Wang, X. Zhang, X.B. Liu, W.T. Bai, Z.Y. Zhu, Y.L. Wang, J. Gao, Control of extractive distillation process for separating heterogenerous ternary azeotropic mixture via adjusting the solvent content, Sep. Purif. Technol. 191 (2018) 8-26. [180] Z.Y. Zhu, X.L. Geng, G.X. Li, X.P. Yu, Y.L. Wang, P.Z. Cui, G.W. Tang, J. Gao, Control comparison of extractive distillation with two different solvents for separating acetone and tetrahydrofuran, Process. Saf. Environ. Prot. 125 (2019) 16-30. [181] L.M. Li, L.J. Guo, Y.Q. Tu, N. Yu, L.Y. Sun, Y.Y. Tian, Q.S. Li, Comparison of different extractive distillation processes for 2-methoxyethanol/toluene separation: Design and control, Comput. Chem. Eng. 99 (2017) 117-134. [182] A. Yang, T. Shi, S.R. Sun, S.A. Wei, W.F. Shen, J.Z. Ren, Dynamic controllability investigation of an energy-saving double side-stream ternary extractive distillation process, Sep. Purif. Technol. 225 (2019) 41-53. [183] E.C. Dechechi, L.F.L. Luz Jr, A.J. Assis, M.R.W. Maciel, R.M. Filho, Interactive supervision of batch distillation with advanced control capabilities, Comput. Chem. Eng. 22 (1998) S867-S870. [184] X.M. Zhu, W.R. Hong, S.Q. Wang, Implementation of advanced control for a heat-integrated distillation column system, 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON. Busan, South Korea. IEEE, (2004) 2006-2011. [185] Z. K Nagy, R. Klein, A. A Kiss, R. Findeisen, Advanced control of a reactive distillation column. Computer Aided Chemical Engineering. Amsterdam: Elsevier, (2007) 805-810. [186] X. Zhang, Y.T. Zhao, H.X. Wang, B. Qin, Z.Y. Zhu, N. Zhang, Y.L. Wang, Control of a ternary extractive distillation process with recycle splitting using a mixed entrainer, Ind. Eng. Chem. Res. 57 (1) (2018) 339-351. [187] L. Zadeh, Fuzzy set theory, Inf Technol Control. 8 (1965) 338-353. [188] E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man Mach. Stud. 7 (1) (1975) 1-13. [189] A.T. Nguyen, T. Taniguchi, L. Eciolaza, V. Campos, R. Palhares, M. Sugeno, Fuzzy control systems: Past, present and future, IEEE Comput. Intell. Mag. 14 (1) (2019) 56-68. [190] L.H. Kong, W. He, C.G. Yang, Z.J. Li, C.Y. Sun, Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning, IEEE Trans. Cybern. 49 (8) (2019) 3052-3063. [191] C.G. Yang, Y.M. Jiang, J. Na, Z.J. Li, L. Cheng, C.Y. Su, Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics, IEEE Trans. Fuzzy Syst. 27 (3) (2019) 574-588. [192] S. Santhanam, R. Langari, Supervisory fuzzy adaptive control of a binary distillation column, IEEE Int. Conf. Fuzzy Syst. 2 (1994) 1063-1068. [193] A.M.F. Fileti, R.D. Pereira Filho, J.A.F.R. Pereira, The development and experimental testing of a fuzzy control system for batch distillation, Braz. J. Chem. Eng. 19 (1) (2002) 1-10. [194] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5 (4) (1943) 115-133. [195] J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79 (8) (1982) 2554-2558. [196] D. Rumelhart, G.E. Hinton, J.L. McClelland, A general framework for parallel distributed processing, in: Parallel distributed processing: Explorations in the microstructure of cognition,A Bradford Book (1986). [197] B. Zarenezhad, A. Aminian, Application of an adaptive neuro inference system for continuous monitoring and control of an extractive distillation plant, J. Chem. Tech. Metal. 48 (2013) 99-103. [198] A.K. Singh, B. Tyagi, V. Kumar, ANFIS based control scheme for binary distillation column, Chem. Prod. Process. Model. 12 (1) (2017) 20160008. [199] A. Hussein Humod Al Jlibawi, M.L. Othman, A. Ishak, B.S. Moh Noor, A.H.M.S. Sajitt, Optimization of distribution control system in oil refinery by applying hybrid machine learning techniques, IEEE Access 10 (2022) 3890-3903. |
[1] | Hui Tan, Xiaodong Hong, Zuwei Liao, Jingyuan Sun, Yao Yang, Jingdai Wang, Yongrong Yang. Combining reinforcement learning with mathematical programming: An approach for optimal design of heat exchanger networks [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 63-71. |
[2] | Jian Long, Kai Deng, Renchu He. Closed-loop scheduling optimization strategy based on particle swarm optimization with niche technology and soft sensor method of attributes-applied to gasoline blending process [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 43-57. |
[3] | Jingwei Yang, Zhengkun Hou, Yao Dai, Kang Ma, Peizhe Cui, Yinglong Wang, Zhaoyou Zhu, Jun Gao. Dynamic control analysis of interconnected pressure-swing distillation process with and without heat integration for separating azeotrope [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 67-76. |
[4] | Lijing Zang, Kejin Huang, Yang Yuan, Xing Qian, Liang Zhang, Haisheng Chen, Shaofeng Wang. Vapor recompressed dividing-wall distillation columns: Structure and performance [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1891-1897. |
[5] | Meng Yu, Zhiyun Zou. Design of structure and control system of semiconductor refrigeration box [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2792-2798. |
[6] | Yixin Ma, Peizhe Cui, Yongkun Wang, Zhaoyou Zhu, Yinglong Wang, Jun Gao. A review of extractive distillation from an azeotropic phenomenon for dynamic control [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1510-1522. |
[7] | Yangcheng Lu, Tianyang Li, Rui Wang, Guangsheng Luo. Synthesis of epichlorohydrin from 1,3-dichloropropanol using solid base [J]. , 2017, 25(3): 301-305. |
[8] | Liangliang Sun, Jianghua Wu, Haiqi Jia, Xuebin Liu. Research on fault detection method for heat pump air conditioning system under cold weather [J]. Chin.J.Chem.Eng., 2017, 25(12): 1812-1819. |
[9] | Hongguang Pan, Weimin Zhong, Zaiying Wang. An on-line constraint softening strategy to guarantee the feasibility of dynamic controller in double-layered MPC [J]. Chin.J.Chem.Eng., 2017, 25(12): 1805-1811. |
[10] | Yang Yuan, Liang Zhang, Haisheng Chen, Shaofeng Wang, Kejin Huang, Huan Shao. Interpreting the dynamic effect of internal heat integration on reactive distillation columns [J]. , 2017, 25(1): 89-102. |
[11] | Jiansheng Wang, Xiao Wang. The heat transfer optimization of conical fin by shape modification [J]. , 2016, 24(8): 972-978. |
[12] | Zhishan Zhang, Qingjun Zhang, Guijie Li, Meiling Liu, Jun Gao. Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation [J]. Chin.J.Chem.Eng., 2016, 24(11): 1584-1599. |
[13] | Xianli Shi, Li Deng, Fangfang Sun, Jieyu Liang, Xu Deng. Key factors governing alkaline pretreatment of waste activated sludge [J]. Chin.J.Chem.Eng., 2015, 23(5): 842-846. |
[14] | Lili Tao, ZhihuaHu, Feng Qian. Design and control of a p-xylene oxidation process [J]. Chin.J.Chem.Eng., 2015, 23(12): 1935-1944. |
[15] | Arwa H. Rabie, Mahmoud M. El-Halwagi. Synthesis and Scheduling of Optimal Batch Water-recycle Networks [J]. , 2008, 16(3): 474-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||